期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
可扩展梯度直方图人体检测算法研究与实现 被引量:1
1
作者 孟凡辉 王浩 +1 位作者 方宝富 彭伟 《广西师范大学学报(自然科学版)》 CAS 北大核心 2011年第3期168-172,共5页
人体检测已经成为机器视觉研究的一个热门课题,针对以梯度直方图作为人体特征描述的人体检测算法存在密集人群检测率较低这一问题。本文根据人体特征差异性,提出一种可扩展梯度直方图人体检测算法,使用非统一的区域方式提取图片梯度直... 人体检测已经成为机器视觉研究的一个热门课题,针对以梯度直方图作为人体特征描述的人体检测算法存在密集人群检测率较低这一问题。本文根据人体特征差异性,提出一种可扩展梯度直方图人体检测算法,使用非统一的区域方式提取图片梯度直方图描述算子,有效改善传统梯度直方图算法在密集人群检测中漏检率过高的情况。 展开更多
关键词 机器视觉 人体检测 密集人群 梯度直方图 可扩展梯度直方图
下载PDF
Establishing and validating a spotted tongue recognition and extraction model based on multiscale convolutional neural network 被引量:7
2
作者 PENG Chengdong WANG Li +3 位作者 JIANG Dongmei YANG Nuo CHEN Renming DONG Changwu 《Digital Chinese Medicine》 2022年第1期49-58,共10页
Objective In tongue diagnosis,the location,color,and distribution of spots can be used to speculate on the viscera and severity of the heat evil.This work focuses on the image analysis method of artificial intelligenc... Objective In tongue diagnosis,the location,color,and distribution of spots can be used to speculate on the viscera and severity of the heat evil.This work focuses on the image analysis method of artificial intelligence(AI)to study the spotted tongue recognition of traditional Chinese medicine(TCM).Methods A model of spotted tongue recognition and extraction is designed,which is based on the principle of image deep learning and instance segmentation.This model includes multiscale feature map generation,region proposal searching,and target region recognition.Firstly,deep convolution network is used to build multiscale low-and high-abstraction feature maps after which,target candidate box generation algorithm and selection strategy are used to select high-quality target candidate regions.Finally,classification network is used for classifying target regions and calculating target region pixels.As a result,the region segmentation of spotted tongue is obtained.Under non-standard illumination conditions,various tongue images were taken by mobile phones,and experiments were conducted.Results The spotted tongue recognition achieved an area under curve(AUC)of 92.40%,an accuracy of 84.30%with a sensitivity of 88.20%,a specificity of 94.19%,a recall of 88.20%,a regional pixel accuracy index pixel accuracy(PA)of 73.00%,a mean pixel accuracy(m PA)of73.00%,an intersection over union(Io U)of 60.00%,and a mean intersection over union(mIo U)of 56.00%.Conclusion The results of the study verify that the model is suitable for the application of the TCM tongue diagnosis system.Spotted tongue recognition via multiscale convolutional neural network(CNN)would help to improve spot classification and the accurate extraction of pixels of spot area as well as provide a practical method for intelligent tongue diagnosis of TCM. 展开更多
关键词 Spotted tongue recognition and extraction The feature of tongue Instance segmentation Multiscale convolutional neural network(CNN) Tongue diagnosis system Artificial intelligence(AI)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部