A combined cavity ringdown (CRD) and laser induced fluorescence (LIF) spectroscopic study on the A1∑+-X1∑+ transition of Cull has been presented. The Cull molecule, as well as its deuterated isotopologue CuD, ...A combined cavity ringdown (CRD) and laser induced fluorescence (LIF) spectroscopic study on the A1∑+-X1∑+ transition of Cull has been presented. The Cull molecule, as well as its deuterated isotopologue CuD, are produced in a supersonic jet expansion by discharging H2 (or D2) and Ar gas mixtures using two copper needles. Different profiles of relative line intensities are observed between the measured LIF and CRD spectra, providing an experimental evidence for the predissociation behavior in the A1∑+ state of Cull. The lifetimes of individual upper rotational levels are measured by LIF, in which the J'-dependent predisso- ciation rates are obtained. Based on the previous theoretical calculations, a predissociation mechanism is concluded due to the strong spin-orbit coupling between the A1∑+ state and the lowest-lying triplet 3∑+ state, and a tunneling effect may also be involved in the predis- sociation. Similar experiments are also performed for CuD, showing that the A1∑+ state of CuD does not undergo a predissociation process.展开更多
基金This work is financially supported by the National Basic Research Program of China (No.2010CB923302 and No.2013CB834602), the National Natural Science Foundation of China (No.21273212, No.21173205, and No.91127042), the Fundamental Research Funds for the Central Universities and Chinese Academy of Sciences (No.KJCX2-YW-N24).
文摘A combined cavity ringdown (CRD) and laser induced fluorescence (LIF) spectroscopic study on the A1∑+-X1∑+ transition of Cull has been presented. The Cull molecule, as well as its deuterated isotopologue CuD, are produced in a supersonic jet expansion by discharging H2 (or D2) and Ar gas mixtures using two copper needles. Different profiles of relative line intensities are observed between the measured LIF and CRD spectra, providing an experimental evidence for the predissociation behavior in the A1∑+ state of Cull. The lifetimes of individual upper rotational levels are measured by LIF, in which the J'-dependent predisso- ciation rates are obtained. Based on the previous theoretical calculations, a predissociation mechanism is concluded due to the strong spin-orbit coupling between the A1∑+ state and the lowest-lying triplet 3∑+ state, and a tunneling effect may also be involved in the predis- sociation. Similar experiments are also performed for CuD, showing that the A1∑+ state of CuD does not undergo a predissociation process.