While three-dimensional perovskites have high defect tolerance and an adjustable bandgap,their charges tend to be free rather than forming excitons,making them unsuitable for use in efficient light-emitting diodes(LED...While three-dimensional perovskites have high defect tolerance and an adjustable bandgap,their charges tend to be free rather than forming excitons,making them unsuitable for use in efficient light-emitting diodes(LEDs).Rather,quasi-two-dimensional(Q-2D)perovskites offer high photoluminescence quantum yield along with the advantages of bulk perovskites,making them ideal for high-performance LEDs.In Q-2D perovskites,the structure(which includes factors like crystal orientation,phase distribution,and layer thickness)directly influences how excitons and charge carriers behave within the material.Growth control techniques,such as varying the synthesis conditions or employing methods,allow for fine-tuning the structural characteristics of these materials,which in turn affect exciton dynamics and charge transport.This review starts with a description of the basic properties of Q-2D perovskites,examines crystal growth in solution,explains how structure affects energy transfer behavior,and concludes with future directions for Q-2D perovskite LEDs.By understanding and optimizing the structure-dependent behavior,researchers can better control exciton dynamics and charge transport,which are crucial for enhancing the performance of optoelectronic devices like solar cells and LEDs.展开更多
SiC_(p)/AZ91 composites were prepared by vacuum pressure infiltration.The microstructure,mechanical properties and wear resistance of composite were studied.Results indicated that SiC particles were uniformly distribu...SiC_(p)/AZ91 composites were prepared by vacuum pressure infiltration.The microstructure,mechanical properties and wear resistance of composite were studied.Results indicated that SiC particles were uniformly distributed in the metal matrix and had a good interface bonding with the metal matrix.Mg_(17)Al_(12) preferably precipitated near the SiC particles,and high-density dislocations were induced by the mismatch of the coefficient of thermal expansion(CTE)between the SiC particle and the AZ91 matrix,thereby accelerating the aging precipitation of the matrix.Compared with AZ91 alloy,the addition of SiC particles improves the hardness and compressive strength of the composite,which is mainly due to the load transfer strengthening and grain refinement strengthening mechanisms.Furthermore,a stable support surface-protecting matrix formed during the wear process because of the excellent wear resistance of SiC.展开更多
The wear behavior and mild−severe(M−S)wear transition of Mg−10Gd−1.5Y−0.4Zr alloy were investigated within a temperature range of 20−200℃.The morphologies and compositions of worn surfaces were examined to identify t...The wear behavior and mild−severe(M−S)wear transition of Mg−10Gd−1.5Y−0.4Zr alloy were investigated within a temperature range of 20−200℃.The morphologies and compositions of worn surfaces were examined to identify the wear mechanisms using scanning electron microscope and energy dispersive X-ray spectrometer.The microstructure and hardness in the subsurfaces were analyzed to reveal the M−S wear transition mechanism.Under a constant loads of 20,35 and 40 N,each wear rate−test temperature curve presented a turning point which corresponded to the M−S wear transition.In mild wear,the surface material was plastically deformed and hence was strainhardened,whereas in severe wear,the surface material was dynamically recrystallized and consequently was softened.It has been found that the critical temperature for M−S wear transition decreases with increasing the normal load,and the normal load exhibits an almost linear relationship with critical temperature for M−S wear transition.This work reveals that the M−S wear transition of the studied alloy conforms to the surface DRX temperature criterion.展开更多
Benefiting from the ultrahigh specific surface areas,highly accessible surface atoms,and highly tunable microscopic structures,the two-dimensional metallenes as nanocatalysts have displayed promising performance for v...Benefiting from the ultrahigh specific surface areas,highly accessible surface atoms,and highly tunable microscopic structures,the two-dimensional metallenes as nanocatalysts have displayed promising performance for various electrocatalytic reactions.Herein,we reviewed recent advances on metallenes in structural regulations including defect,phase,strain,interface,doping,and alloying engineering strategies and their applications in energy electrocatalytic reactions involving oxygen reduction reaction,carbon dioxide reduction reaction,hydrogen evolution reaction,and small molecules oxidation reaction.Finally,we proposed the future challenges and directions in this emerging area.展开更多
文摘While three-dimensional perovskites have high defect tolerance and an adjustable bandgap,their charges tend to be free rather than forming excitons,making them unsuitable for use in efficient light-emitting diodes(LEDs).Rather,quasi-two-dimensional(Q-2D)perovskites offer high photoluminescence quantum yield along with the advantages of bulk perovskites,making them ideal for high-performance LEDs.In Q-2D perovskites,the structure(which includes factors like crystal orientation,phase distribution,and layer thickness)directly influences how excitons and charge carriers behave within the material.Growth control techniques,such as varying the synthesis conditions or employing methods,allow for fine-tuning the structural characteristics of these materials,which in turn affect exciton dynamics and charge transport.This review starts with a description of the basic properties of Q-2D perovskites,examines crystal growth in solution,explains how structure affects energy transfer behavior,and concludes with future directions for Q-2D perovskite LEDs.By understanding and optimizing the structure-dependent behavior,researchers can better control exciton dynamics and charge transport,which are crucial for enhancing the performance of optoelectronic devices like solar cells and LEDs.
基金financial supports from the National Natural Science Foundation of China(Nos.U1810208,51575230)the Science and Technology Development Program of Jilin Province,China(No.20190302059GX)。
文摘SiC_(p)/AZ91 composites were prepared by vacuum pressure infiltration.The microstructure,mechanical properties and wear resistance of composite were studied.Results indicated that SiC particles were uniformly distributed in the metal matrix and had a good interface bonding with the metal matrix.Mg_(17)Al_(12) preferably precipitated near the SiC particles,and high-density dislocations were induced by the mismatch of the coefficient of thermal expansion(CTE)between the SiC particle and the AZ91 matrix,thereby accelerating the aging precipitation of the matrix.Compared with AZ91 alloy,the addition of SiC particles improves the hardness and compressive strength of the composite,which is mainly due to the load transfer strengthening and grain refinement strengthening mechanisms.Furthermore,a stable support surface-protecting matrix formed during the wear process because of the excellent wear resistance of SiC.
基金financial support from the National Natural Science Foundation of China (No.51775226)。
文摘The wear behavior and mild−severe(M−S)wear transition of Mg−10Gd−1.5Y−0.4Zr alloy were investigated within a temperature range of 20−200℃.The morphologies and compositions of worn surfaces were examined to identify the wear mechanisms using scanning electron microscope and energy dispersive X-ray spectrometer.The microstructure and hardness in the subsurfaces were analyzed to reveal the M−S wear transition mechanism.Under a constant loads of 20,35 and 40 N,each wear rate−test temperature curve presented a turning point which corresponded to the M−S wear transition.In mild wear,the surface material was plastically deformed and hence was strainhardened,whereas in severe wear,the surface material was dynamically recrystallized and consequently was softened.It has been found that the critical temperature for M−S wear transition decreases with increasing the normal load,and the normal load exhibits an almost linear relationship with critical temperature for M−S wear transition.This work reveals that the M−S wear transition of the studied alloy conforms to the surface DRX temperature criterion.
文摘Benefiting from the ultrahigh specific surface areas,highly accessible surface atoms,and highly tunable microscopic structures,the two-dimensional metallenes as nanocatalysts have displayed promising performance for various electrocatalytic reactions.Herein,we reviewed recent advances on metallenes in structural regulations including defect,phase,strain,interface,doping,and alloying engineering strategies and their applications in energy electrocatalytic reactions involving oxygen reduction reaction,carbon dioxide reduction reaction,hydrogen evolution reaction,and small molecules oxidation reaction.Finally,we proposed the future challenges and directions in this emerging area.