期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于自加速遗传粒子群算法的半封闭式温室能耗预测 被引量:10
1
作者 陈教料 陈教选 +2 位作者 杨将新 胥芳 沈真 《农业工程学报》 EI CAS CSCD 北大核心 2015年第24期186-193,共8页
针对半封闭式温室环境参数众多且难以测量的问题,提出了一种机理建模与系统辨识建模相结合的温室能耗建模方法。采用自加速遗传粒子群算法(self-accelerating hybrid algorithm of particle swarm optimization and genetic algorithm,S... 针对半封闭式温室环境参数众多且难以测量的问题,提出了一种机理建模与系统辨识建模相结合的温室能耗建模方法。采用自加速遗传粒子群算法(self-accelerating hybrid algorithm of particle swarm optimization and genetic algorithm,SPSO-GA)对温室物理模型中难以确定的参数进行辨识,建立半封闭式温室能耗预测模型。根据上海半封闭式玻璃试验温室的气象数据和测量的能耗值,分别采用遗传算法(genetic algorithm,GA)、粒子群算法(PSO,particle swarm optimization)和SPSO-GA进行参数辨识与能耗预测比较分析。采用SPSO-GA获得的温室能耗预测结果与实测数据的相对误差为1.4%,分别比GA和PSO减少了2.9%和13.7%。根据日太阳光照辐射总量、室外日均温度2个参数及相应的变化曲线,预测的温室能耗值精确度大于86%。试验与模拟结果验证了基于SPSO-GA的温室能耗预测模型有效,可为半封闭式温室能量负载设计、管理和控制提供理论依据。 展开更多
关键词 温室 算法 能耗管理 半封闭式温室 自加速遗传粒子群算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部