A modified mixed strengthening model was proposed for describing the yield strength of particle reinforced aluminum matrix composites.The strengthening mechanisms of the composites were analyzed based on the microstru...A modified mixed strengthening model was proposed for describing the yield strength of particle reinforced aluminum matrix composites.The strengthening mechanisms of the composites were analyzed based on the microstructures and compression mechanical properties.The distribution uniformity of reinforcements and cooperation relationship among dislocation mechanisms were considered in the modified mixed strengthening model by introducing a distribution uniformity factor u and a cooperation coefficient fc,respectively.The results show that the modified mixed strengthening model can accurately describe the yield strengths of Al3Ti/2024Al composites with a relative deviation less than1.2%,which is much more accurate than other strengthening models.The modified mixed model can also be used to predict the yield strength of Al3Ti/2024Al composites with different fractions of reinforcements.展开更多
Nickel-based superalloys are easy to produce low cycle fatigue(LCF)damage when they are subjected to high temperature and mechanical stresses.Fatigue life prediction of nickel-based superalloys is of great importance ...Nickel-based superalloys are easy to produce low cycle fatigue(LCF)damage when they are subjected to high temperature and mechanical stresses.Fatigue life prediction of nickel-based superalloys is of great importance for their reliable practical application.To investigate the effects of total strain and grain size on LCF behavior,the high temperature LCF tests were carried out for a nickel-based superalloy.The results show that the fatigue lives decreased with the increase of strain amplitude and grain size.A new LCF life prediction model was established considering the effect of grain size on fatigue life.Error analyses indicate that the prediction accuracy of the new LCF life model is higher than those of Manson-Coffin relationship and Ostergren energy method.展开更多
The effects of laser parameters and interlayer material on the microstructure and properties of the welded joint between 6061 aluminum alloy and stainless steel were studied.The results show that the density and micro...The effects of laser parameters and interlayer material on the microstructure and properties of the welded joint between 6061 aluminum alloy and stainless steel were studied.The results show that the density and microstructure of the welded joint can be optimized by changing the laser power with 0.05 mm Cu foil and 0.1 mm Ni foil as interlayer.A large number of new Cu-Al binary phases were found near the aluminum alloy,which effectively inhibited the formation of the binary brittle phase of Fe-Al.The maximum shear force of 1350.96 N was obtained with laser power of 2200 W.The shear force of the welded joint increased to 1754.73 N when the thickness of the Cu foil thickness changed to 0.02 mm.展开更多
Asymmetric lowered-temperature rolling was applied to the fabrication of fine-grained ZK60 magnesium alloy sheet with weak basal texture along the rolling direction(RD).The results showed that multi-pass lowered-tempe...Asymmetric lowered-temperature rolling was applied to the fabrication of fine-grained ZK60 magnesium alloy sheet with weak basal texture along the rolling direction(RD).The results showed that multi-pass lowered-temperature rolling could significantly improve the microstructure homogeneity and refine the grain size.Meanwhile,a fiber texture along the transverse direction(TD)gradually developed during rolling process.Importantly,the shear deformation along the RD made the c-axis of basal plane rotate to the RD,weakening the basal texture along this direction.Influenced by such microstructure variation,the yield strength along the TD continuously increased due to the successive grain refinement and the increased activation of prismatic slips,whereas the uniform elongation decreased owing to the decline of strain hardening ability.In contrast,the continuous weakening of basal texture along the RD increased the activation of soft basal slips,greatly offsetting the strengthening effect contributed by grain refinement and thereby causing the slight decrease of yield strength.展开更多
基金Projects (51875121,51405100) supported by the National Natural Science Foundation of ChinaProjects (2014M551233,2017T100237) supported by the China Postdoctoral Science Foundation+2 种基金Project (ZR2017PA003) supported by the Natural Science Foundation of Shandong Province,ChinaProject (2017GGX202006) supported by the Plan of Key Research and Development of Shandong Province,ChinaProject (2016DXGJMS05) supported by the Plan of Science and Technology Development of Weihai,China
文摘A modified mixed strengthening model was proposed for describing the yield strength of particle reinforced aluminum matrix composites.The strengthening mechanisms of the composites were analyzed based on the microstructures and compression mechanical properties.The distribution uniformity of reinforcements and cooperation relationship among dislocation mechanisms were considered in the modified mixed strengthening model by introducing a distribution uniformity factor u and a cooperation coefficient fc,respectively.The results show that the modified mixed strengthening model can accurately describe the yield strengths of Al3Ti/2024Al composites with a relative deviation less than1.2%,which is much more accurate than other strengthening models.The modified mixed model can also be used to predict the yield strength of Al3Ti/2024Al composites with different fractions of reinforcements.
基金Project(51575129) supported by the National Natural Science Foundation of ChinaProject(J15LA51) supported by Shandong Province Higher Educational Science and Technology Program,ChinaProject(2017T100238) supported by China Postdoctoral Science Foundation
文摘Nickel-based superalloys are easy to produce low cycle fatigue(LCF)damage when they are subjected to high temperature and mechanical stresses.Fatigue life prediction of nickel-based superalloys is of great importance for their reliable practical application.To investigate the effects of total strain and grain size on LCF behavior,the high temperature LCF tests were carried out for a nickel-based superalloy.The results show that the fatigue lives decreased with the increase of strain amplitude and grain size.A new LCF life prediction model was established considering the effect of grain size on fatigue life.Error analyses indicate that the prediction accuracy of the new LCF life model is higher than those of Manson-Coffin relationship and Ostergren energy method.
基金financially supported by the National Natural Science Foundation of China(No.51704001)the Natural Science Foundation of Anhui Province,China(No.2008085J23)the Talent Project of Anhui Province,China(Z175050020001)。
文摘The effects of laser parameters and interlayer material on the microstructure and properties of the welded joint between 6061 aluminum alloy and stainless steel were studied.The results show that the density and microstructure of the welded joint can be optimized by changing the laser power with 0.05 mm Cu foil and 0.1 mm Ni foil as interlayer.A large number of new Cu-Al binary phases were found near the aluminum alloy,which effectively inhibited the formation of the binary brittle phase of Fe-Al.The maximum shear force of 1350.96 N was obtained with laser power of 2200 W.The shear force of the welded joint increased to 1754.73 N when the thickness of the Cu foil thickness changed to 0.02 mm.
基金supported by the National Natural Science Foundation of China (Nos. 51975146, 51801192, 52205344)the Natural Science Foundation of Shandong Province, China (No. ZR2020QE171)+1 种基金Key Research and Development Plan in Shandong Province, China (No. 2019JZZY010364)the National Defense Basic Scientific Research of China (No. JCK2018603C017)
文摘Asymmetric lowered-temperature rolling was applied to the fabrication of fine-grained ZK60 magnesium alloy sheet with weak basal texture along the rolling direction(RD).The results showed that multi-pass lowered-temperature rolling could significantly improve the microstructure homogeneity and refine the grain size.Meanwhile,a fiber texture along the transverse direction(TD)gradually developed during rolling process.Importantly,the shear deformation along the RD made the c-axis of basal plane rotate to the RD,weakening the basal texture along this direction.Influenced by such microstructure variation,the yield strength along the TD continuously increased due to the successive grain refinement and the increased activation of prismatic slips,whereas the uniform elongation decreased owing to the decline of strain hardening ability.In contrast,the continuous weakening of basal texture along the RD increased the activation of soft basal slips,greatly offsetting the strengthening effect contributed by grain refinement and thereby causing the slight decrease of yield strength.