A V-shaped bending device was established to evaluate the effects of temperature and bending fillet radius on springback behavior of 2219-W aluminum alloy at cryogenic temperatures.The cryogenic springback mechanism w...A V-shaped bending device was established to evaluate the effects of temperature and bending fillet radius on springback behavior of 2219-W aluminum alloy at cryogenic temperatures.The cryogenic springback mechanism was elucidated through mechanical analyses and numerical simulations.The results indicated that the springback angle at cryogenic temperatures was greater than that at room temperature.The springback angle increased further as the temperature returned to ambient conditions,attributed to the combined effects of the “dual enhancement effect” and thermal expansion.Notably,a critical fillet radius made the springback angle zero for 90° V-shaped bending.The critical fillet radius at cryogenic temperatures was smaller than that at room temperature,owing to the influence of temperature variations on the bending moment ratio between the forward bending section at the fillet and the reverse bending section of the straight arm.展开更多
Hexagonal boron nitride(h-BN)ceramics have become exceptional materials for heat-resistant components in hypersonic vehicles,owing to their superior thermal stability and excellent dielectric properties.However,their ...Hexagonal boron nitride(h-BN)ceramics have become exceptional materials for heat-resistant components in hypersonic vehicles,owing to their superior thermal stability and excellent dielectric properties.However,their densification during sintering still poses challenges for researchers,and their mechanical properties are rather unsatisfactory.In this study,SrAl_(2)Si_(2)O_(8)(SAS),with low melting point and high strength,was introduced into the h-BN ceramics to facilitate the sintering and reinforce the strength and toughness.Then,BN-SAS ceramic composites were fabricated via hot press sintering using h-BN,SrCO_(3),Al_(2)O_(3),and SiO_(2) as raw materials,and effects of sintering pressure on their microstructure,mechanical property,and thermal property were investigated.The thermal shock resistance of BN-SAS ceramic composites was evaluated.Results show that phases of as-preparedBN-SAS ceramic composites are h-BN and h-SrAl_(2)Si_(2)O_(8).With the increase of sintering pressure,the composites’densities increase,and the mechanical properties shew a rising trend followed by a slight decline.At a sintering pressure of 20 MPa,their bending strength and fracture toughness are(138±4)MPa and(1.84±0.05)MPa·m^(1/2),respectively.Composites sintered at 10 MPa exhibit a low coefficient of thermal expansion,with an average of 2.96×10^(-6) K^(-1) in the temperature range from 200 to 1200℃.The BN-SAS ceramic composites prepared at 20 MPa display higher thermal conductivity from 12.42 to 28.42 W·m^(-1)·K^(-1) within the temperature range from room temperature to 1000℃.Notably,BN-SAS composites exhibit remarkable thermal shock resistance,with residual bending strength peaking and subsequently declining sharply under a thermal shock temperature difference ranging from 600 to 1400℃.The maximum residual bending strength is recorded at a temperature difference of 800℃,with a residual strength retention rate of 101%.As the thermal shock temperature difference increase,the degree of oxidation on the ceramic surface and cracks due to thermal stress are also increased gradually.展开更多
The damping properties were improved by preparing Al matrix composites reinforced with glass cenospheres through the pressure infiltration method.Transmission electron microscopy and scanning electron microscopy were ...The damping properties were improved by preparing Al matrix composites reinforced with glass cenospheres through the pressure infiltration method.Transmission electron microscopy and scanning electron microscopy were employed to characterize the microstructure of the composites.The low-frequency damping properties were examined by using a dynamic mechanical thermal analyzer,aiming at exploring the changing trend of damping capacity with strain,temperature,and frequency.The findings demonstrated that the damping value rose as temperature and strain increased,with a maximum value of 0.15.Additionally,the damping value decreased when the frequency increased.Dislocation damping under strain and interfacial damping under temperature served as the two primary damping mechanisms.The increase in the density of dislocation strong pinning points following heat treatment reduced the damping value,which was attributed to the heat treatment enhancement of the interfacial bonding force of the composites.展开更多
The burst feeding behavior of ZL205 A casting under mechanical vibration and low pressure was investigated by casting experiment and physical model. Experimental results indicated that the burst feeding appeared repea...The burst feeding behavior of ZL205 A casting under mechanical vibration and low pressure was investigated by casting experiment and physical model. Experimental results indicated that the burst feeding appeared repeatedly during solidification and left a shrinkage cavity with layered structure under mechanical vibration. The castings with less shrinkage and higher density could be achieved through the vibration. The calculation results of physical model showed that the burst feeding could perform spontaneously under vibration while difficultly without vibration in low-pressure die casting. The obstruction of a casting could be broken and the grains could be rearranged by the vibration. And the obstruction could be carried away due to the inner and outer pressure difference, causing a burst feeding.展开更多
Numerical investigations on the flow field in Ti-Al melt during rectangular cold crucible directional solidification were carried out. Combined with the experimental results, 3-D finite element models for calculating ...Numerical investigations on the flow field in Ti-Al melt during rectangular cold crucible directional solidification were carried out. Combined with the experimental results, 3-D finite element models for calculating flow field inside melting pool were established, the characteristics of the flow under different power parameters were further studied. Numerical calculation results show that there is a complex circular flow in the melt, a rapid horizontal flow exists on the solid/liquid interface and those flows confluence in the center of the melting pool. The flow velocity v increases with the increase of current intensity, but the flow patterns remain unchanged. When the current is 1000 A, the vmax reaches 4 mm/s and the flow on the interface achieves 3 mm/s. Flow patterns are quite different when the frequency changes from 10 kHz to 100 kHz, the mechanism of the frequency influence on the flow pattern is analyzed, and there is an optimum frequency for cold crucible directional solidification.展开更多
ZL205 A alloys with large thin-walled shape were continuously processed by coupling travelling magnetic fields(TMF)with sequential solidification,to eliminate the shrinkage defects and optimize the mechanical performa...ZL205 A alloys with large thin-walled shape were continuously processed by coupling travelling magnetic fields(TMF)with sequential solidification,to eliminate the shrinkage defects and optimize the mechanical performance.Through experiments and simulations,the parameter optimization of TMF and the influence on feeding behavior,microstructure and properties were systematically studied.The results indicate that the magnetic force maximizes at the excitation current of 20 A and frequency of 200 Hz under the experimental conditions of this study,and increases from center to side-walls,which is more convenient to process thin-walled castings.TMF can break secondary dendritic arm and dendrites overlaps,widen feeding channels,prolong the feeding time,optimize the feeding paths,eliminate shrinkage defects and improve properties.Specifically,for as-cast state,TMF with excitation current of 20 A increases ultimate tensile strength,elongation and micro-hardness from 186 MPa,7.3%and 82.1 kg/mm^(2) to 221 MPa,11.7%and 100.5 kg/mm^(2),decreases porosity from 1.71%to 0.22%,and alters brittle fracture to ductile fracture.展开更多
5.0 vol.% graphene nanoplatelets(GNPs) and aluminum powders were mixed to prepare GNPs/Al composites via high-energy ball milling(HEBM). The mixed powders were subjected to spark plasma sintering(SPS) and subsequent h...5.0 vol.% graphene nanoplatelets(GNPs) and aluminum powders were mixed to prepare GNPs/Al composites via high-energy ball milling(HEBM). The mixed powders were subjected to spark plasma sintering(SPS) and subsequent hot extrusion. The microstructure and mechanical properties of extruded composites were investigated by X-ray photoelectron spectroscopy(XPS), transmission electron microscopy(TEM) and tensile tests. In the extruded composites, 5.0 vol.% GNPs were dispersed homogeneously and no serious GNP-Al interfacial reaction occurred. As a result, the yield strength and ultimate tensile strength of the extruded GNPs/Al composites reached 462 and 479 MPa, which were 62% and 60% higher than those of the extruded Al matrix, respectively. The enhanced mechanical properties were attributed to the effective load transfer capacity of dispersed GNPs. This demonstrated that it may be promising to introduce dispersed high-content GNPs via HEBM, SPS and hot extrusion techniques and GNP-Al interfacial reaction can be controlled.展开更多
Cylindrical samples of Ni-based GH4037 alloy were compressed at solid temperatures(1200,1250 and 1300℃) and semi-solid temperatures(1340,1350,1360,1370 and 1380℃) with different strain rates of 0.01,0.1 and 1 s-1.Hi...Cylindrical samples of Ni-based GH4037 alloy were compressed at solid temperatures(1200,1250 and 1300℃) and semi-solid temperatures(1340,1350,1360,1370 and 1380℃) with different strain rates of 0.01,0.1 and 1 s-1.High temperature deformation behavior and microstructure evolution of GH4037 alloy were investigated.The results indicated that flow stress decreased rapidly at semi-solid temperatures compared to that at solid temperatures.Besides,the flow stress continued to increase after reaching the initial peak stress at semi-solid temperatures when the strain rate was 1 s-1.With increasing the deformation temperature,the size of initial solid grains and recrystallized grains increased.At semi-solid temperatures,the grains were equiaxed,and liquid phase existed at the grain boundaries and inside the grains.Discontinuous dynamic recrystallization(DDRX) characterized by grain boundary bulging was the main nucleation mechanism for GH4037 alloy.展开更多
The influence of Mo content on the microstructure and mechanical properties of the Ti?45Al?5Nb?xMo?0.3Y(x=0.6,0.8,1.0,1.2)alloys was studied using small ingots produced by non-consumable electrode argon arc melting.Th...The influence of Mo content on the microstructure and mechanical properties of the Ti?45Al?5Nb?xMo?0.3Y(x=0.6,0.8,1.0,1.2)alloys was studied using small ingots produced by non-consumable electrode argon arc melting.The results show that smallquantities ofβphase are distributed alongγ/α2lamellar colony boundaries as discontinuous network in the TiAl alloys owing to thesegregation of Mo element.Theγphase forms in the interdentritic microsegregation area when the Mo addition exceeds0.8%.Theβandγphases can be eliminated effectively by subsequent homogenization heat treatment at the temperature above Tα.The evolutionof the strength,microhardness and ductility at different Mo contents under as-cast and as-homogenization treated conditions wasanalyzed,indicating that excessive Mo addition is prone to cause the microsegregation,thus decreasing the strength andmicrohardness obviously,which can be improved effectively by subsequent homogenization heat treatment.展开更多
In order to understand the evolution of oxygen-rich layer (ORL) on titanium alloys, the near α titanium alloy TA15 and α+β type titanium alloy TC4 were thermally exposed in air at 850 °C to evaluate the effect...In order to understand the evolution of oxygen-rich layer (ORL) on titanium alloys, the near α titanium alloy TA15 and α+β type titanium alloy TC4 were thermally exposed in air at 850 °C to evaluate the effect of α phase content on formation and evolution of ORL, and the stability and diffusion of oxygen in α- and β-Ti were investigated by first principles calculations to reveal the oxygen diffusion rate. TA15 with more α phases has a higher diffusion coefficient of ORL evolution than TC4, resulting in forming thicker ORL on TA15 under the same thermal exposure condition. The first principles calculations indicate that octahedral interstice of α-Ti is the most stable site for oxygen atom. The nearest neighbor diffusion between octahedral interstices along the [0001] direction in α-Ti presenting the lowest activation energy is the most favorable oxygen diffusion mechanism in α- and β-Ti.展开更多
In order to elucidate the microstructure evolution and silicide precipitation behavior during high-temperature deformation,TiB reinforced titanium matrix composites were subjected to isothermal hot compression at 950...In order to elucidate the microstructure evolution and silicide precipitation behavior during high-temperature deformation,TiB reinforced titanium matrix composites were subjected to isothermal hot compression at 950℃,strain rate of 0.05 s^(−1) and employing different strains of 0.04,0.40,0.70 and 1.00.The results show that with the increase of strain,a decrease in the content,dynamic recrystallization of theαphase and the vertical distribution of TiB along the compression axis lead to stress stability.Meantime,continuous dynamic recrystallization reduces the orientation difference of the primaryαphase,which weakens the texture strength of the matrix.The recrystallization mechanisms are strain-induced grain boundary migration and particle stimulated nucleation by TiB.The silicide of Ti_(6)Si_(3) is mainly distributed at the interface of TiB andαphase.The precipitation of silicide is affected by element diffusion,and TiB whisker accelerates the precipitation behavior of silicide by hindering the movement of dislocations and providing nucleation particles.展开更多
An equal channel reciprocating extrusion(ECRE)was proposed first to obtain a severe plastic deformation(SPD)of 7005 alloy.The microstructure and mechanical properties of one-pass ECREed(ECRE processed)7005 alloy were ...An equal channel reciprocating extrusion(ECRE)was proposed first to obtain a severe plastic deformation(SPD)of 7005 alloy.The microstructure and mechanical properties of one-pass ECREed(ECRE processed)7005 alloy were investigated.The results show that SPD occurring in ECRE leads to a mixed microstructure.ECREed 7005 alloy exhibits a significant improvement of ultimate tensile strength(UTS)and elongation.Mechanical properties in the region undergoing a complete ECRE process are higher than those in the region undergoing an incomplete ECRE process due to larger dislocation strengthening effect.Yield strength(YS)and UTS first decrease and then increase with an increase of extrusion temperature.The YS of 359.2 MPa,UTS of 490 MPa and elongation of 17.7%are obtained after T6 treatment.Fine-grain strengthening,dislocation strengthening and precipitation strengthening in the T6-treated ECREed sample all play important roles in improving the mechanical properties.展开更多
The hot deformation characteristics of as-forged Ti−3.5Al−5Mo−6V−3Cr−2Sn−0.5Fe−0.1B−0.1C alloy within a temperature range from 750 to 910℃and a strain rate range from 0.001 to 1 s^(-1) were investigated by hot compre...The hot deformation characteristics of as-forged Ti−3.5Al−5Mo−6V−3Cr−2Sn−0.5Fe−0.1B−0.1C alloy within a temperature range from 750 to 910℃and a strain rate range from 0.001 to 1 s^(-1) were investigated by hot compression tests.The stress−strain curves show that the flow stress decreases with the increase of temperature and the decrease of strain rate.The microstructure is sensitive to deformation parameters.The dynamic recrystallization(DRX)grains appear while the temperature reaches 790℃at a constant strain rate of 0.001 s^(-1) and strain rate is not higher than 0.1 s^(-1) at a constant temperature of 910℃.The work-hardening rateθis calculated and it is found that DRX prefers to happen at high temperature and low strain rate.The constitutive equation and processing map were obtained.The average activation energy of the alloy is 242.78 kJ/mol and there are few unstable regions on the processing map,which indicates excellent hot workability.At the strain rate of 0.1 s^(-1),the stress−strain curves show an abnormal shape where there are two stress peaks simultaneously.This can be attributed to the alternation of hardening effect,which results from the continuous dynamic recrystallization(CDRX)and the rotation of DRX grains,and dynamic softening mechanism.展开更多
Severe surface roughening during plastic deforming of aluminum alloy parts can produce "orange peel" defects. To analyze "orange peel" of 6063 aluminum alloy tube quantificationally, the tensile tests of trapezoid...Severe surface roughening during plastic deforming of aluminum alloy parts can produce "orange peel" defects. To analyze "orange peel" of 6063 aluminum alloy tube quantificationally, the tensile tests of trapezoidal specimens were carried out. The tubes with different grain sizes were obtained by spinning and subsequent annealing heat treatment. The macroscopical behavior of surface roughening was characterized by surface roughness Ra using a laser scanning confocal microscope. The corresponding microscopic behavior was reflected by microstructures of specimens and in-situ observation using electron back-scattered diffraction(EBSD). The obtained results show that the surface roughness increased firstly with increasing strain and then decreased slightly. There was a critical strain for aluminum alloy tube, below which "orange peel" defect would not occur. For the tube with a mean grain size of 80, 105, 130 and 175 μm, the critical strains were 10.17%, 5.74%, 3.15% and 1.62%, respectively. Meanwhile, the surface roughening behavior was produced by serious inhomogeneous deformation between grains as strain increased, and was aggravated as the grain size increased due to the larger local deformation in larger grains.展开更多
A 0.7 mm-thick wavy γ-TiAl sheet with fully lamellar microstructure was fabricated by hot pressing Ti/Al alternate foils with heat treatment of 640 °C, 15 h+850 °C, 35 h+1350 °C, 2 h. The intermetall...A 0.7 mm-thick wavy γ-TiAl sheet with fully lamellar microstructure was fabricated by hot pressing Ti/Al alternate foils with heat treatment of 640 °C, 15 h+850 °C, 35 h+1350 °C, 2 h. The intermetallic compounds formed during heat treatments were identified by scanning electron microscopy (SEM) and X-ray diffraction (XRD). TiAl3 was the only observed phase at the Ti/Al interface when Al foils were not consumed. After being annealed at 850 °C for 35 h, the microstructure was composed of α-Ti, α2-Ti3Al, γ-TiAl and TiAl2. A fully lamellar microstructure formed after annealing at 1350 °C. Most of the angles between the lamellar interface and the sheet plane are below 30°. Using thinner starting foils is favorable to produce sheets with fine microstructure.展开更多
In order to improve mechanical properties and optimize composition of TiAl-Nb alloys, Ti46 Al5 Nb0.1 B alloys with different contents of Fe(0, 0.3, 0.5, 0.7, 0.9, and 1.1 at.%) were prepared by melting. Macro/microstr...In order to improve mechanical properties and optimize composition of TiAl-Nb alloys, Ti46 Al5 Nb0.1 B alloys with different contents of Fe(0, 0.3, 0.5, 0.7, 0.9, and 1.1 at.%) were prepared by melting. Macro/microstructure and compression properties of the alloys were systematically investigated. Results show that Fe element can decrease the grain size, aggravate the Al-segregation and also form the Fe-rich B2 phase in the interdendritic area. Compressive testing results indicate that the Ti46 Al5 Nb0.1 B0.3 Fe alloy shows the highest ultimate compressive strength and fracture strain, which are 1869.5 MPa and 33.53%, respectively. The improved ultimate compression strength is ascribed to the grain refinement and solid solution strengthening of Fe, and the improved fracture strain is due to the reduced lattice tetragonality of γ phase and grain refinement of the alloys. However, excessive Fe addition decreases compressive strength and fracture strain, which is caused by the severe Al-segregation.展开更多
Minor Dy element was added into a Mg?4Y?3Nd?0.4Zr alloy,and its effects on the microstructure and the mechanicalproperties at elevated temperatures were investigated.Scanning electron microscope(SEM)and transmission e...Minor Dy element was added into a Mg?4Y?3Nd?0.4Zr alloy,and its effects on the microstructure and the mechanicalproperties at elevated temperatures were investigated.Scanning electron microscope(SEM)and transmission electron microscope(TEM)were used to observe the microstructures.The results indicated that the as-cast eutectic and isolated cuboid-shaped Mg?REphases were Mg5RE and Mg3RE17,respectively,and distributed mainly along grain boundaries.After a solution treatment,theeutectic Mg5RE phases were dissolved into the matrix,whereas the Mg3RE17compound still remained.After peak aging,fineMg?RE phases were precipitated homogeneously within the matrix of the alloys containing Dy.Dy addition can result in asignificant improvement in the tensile strength at both room and elevated temperatures,and a slight decrease in the elongation.展开更多
Ti43Al and Ti47Al alloys with different contents of zirconium were prepared by non-consumable vacuum arc melting furnace.The microstructure and mechanical properties were investigated.The results showed that Zr had no...Ti43Al and Ti47Al alloys with different contents of zirconium were prepared by non-consumable vacuum arc melting furnace.The microstructure and mechanical properties were investigated.The results showed that Zr had no obvious effect on microstructure morphology of Ti43Al,while that of Ti47Al was modified from dendrites into equiaxed grains.The addition of Zr could refine the grains.Zr promoted the formation ofγphase significantly and the solubility values of Zr inγphase were 12.0%and 5.0%(molar fraction)in Ti43Al and Ti47Al,respectively.Zr-richγphase mainly formed throughβ→γin Ti43Al-xZr(molar fraction,%)andβ→α→γin Ti47Al-xZr(molar fraction,%).Fine-grain strengthening and solution strengthening were beneficial to improving the compressive strength while severe micro-segregation was detrimental to compressive properties.Large solubility of Zr was bad for ductility of alloys as well.The maximum compressive strengths of Ti43Al-xZr and Ti47Al-xZr were 1684.82 MPa(x=5.0%)and 2158.03 MPa(x=0.5%),respectively.The compressive strain fluctuated slightly in Ti43Al-xZr and reached the maximum value of 35.24%(x=0.5%)in Ti47Al-xZr.Both alloys showed brittle fracture.展开更多
基金the financial supports from the National Key Research and Development Program of China (No. 2019YFA0708804)。
文摘A V-shaped bending device was established to evaluate the effects of temperature and bending fillet radius on springback behavior of 2219-W aluminum alloy at cryogenic temperatures.The cryogenic springback mechanism was elucidated through mechanical analyses and numerical simulations.The results indicated that the springback angle at cryogenic temperatures was greater than that at room temperature.The springback angle increased further as the temperature returned to ambient conditions,attributed to the combined effects of the “dual enhancement effect” and thermal expansion.Notably,a critical fillet radius made the springback angle zero for 90° V-shaped bending.The critical fillet radius at cryogenic temperatures was smaller than that at room temperature,owing to the influence of temperature variations on the bending moment ratio between the forward bending section at the fillet and the reverse bending section of the straight arm.
基金National Natural Science Foundation of China (52072088, 52072089)Natural Science Foundation of Heilongjiang Province (LH2023E061)+1 种基金Scientific and Technological Innovation Leading Talent of Harbin Manufacturing (2022CXRCCG001)Fundamental Research Funds for the Central Universities (3072023CFJ1003)。
文摘Hexagonal boron nitride(h-BN)ceramics have become exceptional materials for heat-resistant components in hypersonic vehicles,owing to their superior thermal stability and excellent dielectric properties.However,their densification during sintering still poses challenges for researchers,and their mechanical properties are rather unsatisfactory.In this study,SrAl_(2)Si_(2)O_(8)(SAS),with low melting point and high strength,was introduced into the h-BN ceramics to facilitate the sintering and reinforce the strength and toughness.Then,BN-SAS ceramic composites were fabricated via hot press sintering using h-BN,SrCO_(3),Al_(2)O_(3),and SiO_(2) as raw materials,and effects of sintering pressure on their microstructure,mechanical property,and thermal property were investigated.The thermal shock resistance of BN-SAS ceramic composites was evaluated.Results show that phases of as-preparedBN-SAS ceramic composites are h-BN and h-SrAl_(2)Si_(2)O_(8).With the increase of sintering pressure,the composites’densities increase,and the mechanical properties shew a rising trend followed by a slight decline.At a sintering pressure of 20 MPa,their bending strength and fracture toughness are(138±4)MPa and(1.84±0.05)MPa·m^(1/2),respectively.Composites sintered at 10 MPa exhibit a low coefficient of thermal expansion,with an average of 2.96×10^(-6) K^(-1) in the temperature range from 200 to 1200℃.The BN-SAS ceramic composites prepared at 20 MPa display higher thermal conductivity from 12.42 to 28.42 W·m^(-1)·K^(-1) within the temperature range from room temperature to 1000℃.Notably,BN-SAS composites exhibit remarkable thermal shock resistance,with residual bending strength peaking and subsequently declining sharply under a thermal shock temperature difference ranging from 600 to 1400℃.The maximum residual bending strength is recorded at a temperature difference of 800℃,with a residual strength retention rate of 101%.As the thermal shock temperature difference increase,the degree of oxidation on the ceramic surface and cracks due to thermal stress are also increased gradually.
基金financially supported by the National Key Research and Development Program of China(No.2022YFE0121400)the National Natural Science Foundation of China(Nos.52071117,52111530297,51601047)+1 种基金the Heilongjiang Provincial Science Fund for Distinguished Young Scholars,China(No.JQ2021E002)the Guangdong Basic and Applied Basic Research Foundation,China(No.2022B1515120016)。
文摘The damping properties were improved by preparing Al matrix composites reinforced with glass cenospheres through the pressure infiltration method.Transmission electron microscopy and scanning electron microscopy were employed to characterize the microstructure of the composites.The low-frequency damping properties were examined by using a dynamic mechanical thermal analyzer,aiming at exploring the changing trend of damping capacity with strain,temperature,and frequency.The findings demonstrated that the damping value rose as temperature and strain increased,with a maximum value of 0.15.Additionally,the damping value decreased when the frequency increased.Dislocation damping under strain and interfacial damping under temperature served as the two primary damping mechanisms.The increase in the density of dislocation strong pinning points following heat treatment reduced the damping value,which was attributed to the heat treatment enhancement of the interfacial bonding force of the composites.
基金Projects(51475120,U1537201) supported by the National Natural Science Foundation of China
文摘The burst feeding behavior of ZL205 A casting under mechanical vibration and low pressure was investigated by casting experiment and physical model. Experimental results indicated that the burst feeding appeared repeatedly during solidification and left a shrinkage cavity with layered structure under mechanical vibration. The castings with less shrinkage and higher density could be achieved through the vibration. The calculation results of physical model showed that the burst feeding could perform spontaneously under vibration while difficultly without vibration in low-pressure die casting. The obstruction of a casting could be broken and the grains could be rearranged by the vibration. And the obstruction could be carried away due to the inner and outer pressure difference, causing a burst feeding.
基金Project (2011CB605504) supported by the National Basic Research Program of China
文摘Numerical investigations on the flow field in Ti-Al melt during rectangular cold crucible directional solidification were carried out. Combined with the experimental results, 3-D finite element models for calculating flow field inside melting pool were established, the characteristics of the flow under different power parameters were further studied. Numerical calculation results show that there is a complex circular flow in the melt, a rapid horizontal flow exists on the solid/liquid interface and those flows confluence in the center of the melting pool. The flow velocity v increases with the increase of current intensity, but the flow patterns remain unchanged. When the current is 1000 A, the vmax reaches 4 mm/s and the flow on the interface achieves 3 mm/s. Flow patterns are quite different when the frequency changes from 10 kHz to 100 kHz, the mechanism of the frequency influence on the flow pattern is analyzed, and there is an optimum frequency for cold crucible directional solidification.
基金financial supports from the National Key Research and Development Program of China(2017YFA0403804)the National Natural Science Foundation of China(51425402,51671073)。
文摘ZL205 A alloys with large thin-walled shape were continuously processed by coupling travelling magnetic fields(TMF)with sequential solidification,to eliminate the shrinkage defects and optimize the mechanical performance.Through experiments and simulations,the parameter optimization of TMF and the influence on feeding behavior,microstructure and properties were systematically studied.The results indicate that the magnetic force maximizes at the excitation current of 20 A and frequency of 200 Hz under the experimental conditions of this study,and increases from center to side-walls,which is more convenient to process thin-walled castings.TMF can break secondary dendritic arm and dendrites overlaps,widen feeding channels,prolong the feeding time,optimize the feeding paths,eliminate shrinkage defects and improve properties.Specifically,for as-cast state,TMF with excitation current of 20 A increases ultimate tensile strength,elongation and micro-hardness from 186 MPa,7.3%and 82.1 kg/mm^(2) to 221 MPa,11.7%and 100.5 kg/mm^(2),decreases porosity from 1.71%to 0.22%,and alters brittle fracture to ductile fracture.
基金financial supports from National Key R&D Program of China (2017YFB0703103)Key Area R&D Program of Guangdong Province,China (2019B010942001)。
文摘5.0 vol.% graphene nanoplatelets(GNPs) and aluminum powders were mixed to prepare GNPs/Al composites via high-energy ball milling(HEBM). The mixed powders were subjected to spark plasma sintering(SPS) and subsequent hot extrusion. The microstructure and mechanical properties of extruded composites were investigated by X-ray photoelectron spectroscopy(XPS), transmission electron microscopy(TEM) and tensile tests. In the extruded composites, 5.0 vol.% GNPs were dispersed homogeneously and no serious GNP-Al interfacial reaction occurred. As a result, the yield strength and ultimate tensile strength of the extruded GNPs/Al composites reached 462 and 479 MPa, which were 62% and 60% higher than those of the extruded Al matrix, respectively. The enhanced mechanical properties were attributed to the effective load transfer capacity of dispersed GNPs. This demonstrated that it may be promising to introduce dispersed high-content GNPs via HEBM, SPS and hot extrusion techniques and GNP-Al interfacial reaction can be controlled.
基金Project(51575127)supported by the National Natural Science Foundation of China
文摘Cylindrical samples of Ni-based GH4037 alloy were compressed at solid temperatures(1200,1250 and 1300℃) and semi-solid temperatures(1340,1350,1360,1370 and 1380℃) with different strain rates of 0.01,0.1 and 1 s-1.High temperature deformation behavior and microstructure evolution of GH4037 alloy were investigated.The results indicated that flow stress decreased rapidly at semi-solid temperatures compared to that at solid temperatures.Besides,the flow stress continued to increase after reaching the initial peak stress at semi-solid temperatures when the strain rate was 1 s-1.With increasing the deformation temperature,the size of initial solid grains and recrystallized grains increased.At semi-solid temperatures,the grains were equiaxed,and liquid phase existed at the grain boundaries and inside the grains.Discontinuous dynamic recrystallization(DDRX) characterized by grain boundary bulging was the main nucleation mechanism for GH4037 alloy.
基金Project(51275132)supported by the National Natural Science Foundation of ChinaProject(2008RFQXG040)supported by the Youth Science and Technology Project of Harbin,China
文摘The influence of Mo content on the microstructure and mechanical properties of the Ti?45Al?5Nb?xMo?0.3Y(x=0.6,0.8,1.0,1.2)alloys was studied using small ingots produced by non-consumable electrode argon arc melting.The results show that smallquantities ofβphase are distributed alongγ/α2lamellar colony boundaries as discontinuous network in the TiAl alloys owing to thesegregation of Mo element.Theγphase forms in the interdentritic microsegregation area when the Mo addition exceeds0.8%.Theβandγphases can be eliminated effectively by subsequent homogenization heat treatment at the temperature above Tα.The evolutionof the strength,microhardness and ductility at different Mo contents under as-cast and as-homogenization treated conditions wasanalyzed,indicating that excessive Mo addition is prone to cause the microsegregation,thus decreasing the strength andmicrohardness obviously,which can be improved effectively by subsequent homogenization heat treatment.
基金Project(51701128) supported by the National Natural Science Foundation of China
文摘In order to understand the evolution of oxygen-rich layer (ORL) on titanium alloys, the near α titanium alloy TA15 and α+β type titanium alloy TC4 were thermally exposed in air at 850 °C to evaluate the effect of α phase content on formation and evolution of ORL, and the stability and diffusion of oxygen in α- and β-Ti were investigated by first principles calculations to reveal the oxygen diffusion rate. TA15 with more α phases has a higher diffusion coefficient of ORL evolution than TC4, resulting in forming thicker ORL on TA15 under the same thermal exposure condition. The first principles calculations indicate that octahedral interstice of α-Ti is the most stable site for oxygen atom. The nearest neighbor diffusion between octahedral interstices along the [0001] direction in α-Ti presenting the lowest activation energy is the most favorable oxygen diffusion mechanism in α- and β-Ti.
基金financial supports from the National Natural Science Foundation of China (No. 51871184)the Natural Science Foundation of Shandong Province, China (No. ZR2019MEM037)+1 种基金the Zhoucun School-City Integration Development Plan, China (No. 2020ZCXCZH03)the School-city Integration Development Project of Zibo, China (No. 2019ZBXC022)。
文摘In order to elucidate the microstructure evolution and silicide precipitation behavior during high-temperature deformation,TiB reinforced titanium matrix composites were subjected to isothermal hot compression at 950℃,strain rate of 0.05 s^(−1) and employing different strains of 0.04,0.40,0.70 and 1.00.The results show that with the increase of strain,a decrease in the content,dynamic recrystallization of theαphase and the vertical distribution of TiB along the compression axis lead to stress stability.Meantime,continuous dynamic recrystallization reduces the orientation difference of the primaryαphase,which weakens the texture strength of the matrix.The recrystallization mechanisms are strain-induced grain boundary migration and particle stimulated nucleation by TiB.The silicide of Ti_(6)Si_(3) is mainly distributed at the interface of TiB andαphase.The precipitation of silicide is affected by element diffusion,and TiB whisker accelerates the precipitation behavior of silicide by hindering the movement of dislocations and providing nucleation particles.
基金This work is supported by the National Natural Science Foundation of China(51875124).
文摘An equal channel reciprocating extrusion(ECRE)was proposed first to obtain a severe plastic deformation(SPD)of 7005 alloy.The microstructure and mechanical properties of one-pass ECREed(ECRE processed)7005 alloy were investigated.The results show that SPD occurring in ECRE leads to a mixed microstructure.ECREed 7005 alloy exhibits a significant improvement of ultimate tensile strength(UTS)and elongation.Mechanical properties in the region undergoing a complete ECRE process are higher than those in the region undergoing an incomplete ECRE process due to larger dislocation strengthening effect.Yield strength(YS)and UTS first decrease and then increase with an increase of extrusion temperature.The YS of 359.2 MPa,UTS of 490 MPa and elongation of 17.7%are obtained after T6 treatment.Fine-grain strengthening,dislocation strengthening and precipitation strengthening in the T6-treated ECREed sample all play important roles in improving the mechanical properties.
文摘The hot deformation characteristics of as-forged Ti−3.5Al−5Mo−6V−3Cr−2Sn−0.5Fe−0.1B−0.1C alloy within a temperature range from 750 to 910℃and a strain rate range from 0.001 to 1 s^(-1) were investigated by hot compression tests.The stress−strain curves show that the flow stress decreases with the increase of temperature and the decrease of strain rate.The microstructure is sensitive to deformation parameters.The dynamic recrystallization(DRX)grains appear while the temperature reaches 790℃at a constant strain rate of 0.001 s^(-1) and strain rate is not higher than 0.1 s^(-1) at a constant temperature of 910℃.The work-hardening rateθis calculated and it is found that DRX prefers to happen at high temperature and low strain rate.The constitutive equation and processing map were obtained.The average activation energy of the alloy is 242.78 kJ/mol and there are few unstable regions on the processing map,which indicates excellent hot workability.At the strain rate of 0.1 s^(-1),the stress−strain curves show an abnormal shape where there are two stress peaks simultaneously.This can be attributed to the alternation of hardening effect,which results from the continuous dynamic recrystallization(CDRX)and the rotation of DRX grains,and dynamic softening mechanism.
基金Project(IRT1229)supported by Program for Chang-jiang Scholars and Innovative Research Team in University,China
文摘Severe surface roughening during plastic deforming of aluminum alloy parts can produce "orange peel" defects. To analyze "orange peel" of 6063 aluminum alloy tube quantificationally, the tensile tests of trapezoidal specimens were carried out. The tubes with different grain sizes were obtained by spinning and subsequent annealing heat treatment. The macroscopical behavior of surface roughening was characterized by surface roughness Ra using a laser scanning confocal microscope. The corresponding microscopic behavior was reflected by microstructures of specimens and in-situ observation using electron back-scattered diffraction(EBSD). The obtained results show that the surface roughness increased firstly with increasing strain and then decreased slightly. There was a critical strain for aluminum alloy tube, below which "orange peel" defect would not occur. For the tube with a mean grain size of 80, 105, 130 and 175 μm, the critical strains were 10.17%, 5.74%, 3.15% and 1.62%, respectively. Meanwhile, the surface roughening behavior was produced by serious inhomogeneous deformation between grains as strain increased, and was aggravated as the grain size increased due to the larger local deformation in larger grains.
基金Project (50771041) supported by the National Natural Science Foundation of ChinaProject (05-0350) supported by the New Century Excellent Talents in University, China
文摘A 0.7 mm-thick wavy γ-TiAl sheet with fully lamellar microstructure was fabricated by hot pressing Ti/Al alternate foils with heat treatment of 640 °C, 15 h+850 °C, 35 h+1350 °C, 2 h. The intermetallic compounds formed during heat treatments were identified by scanning electron microscopy (SEM) and X-ray diffraction (XRD). TiAl3 was the only observed phase at the Ti/Al interface when Al foils were not consumed. After being annealed at 850 °C for 35 h, the microstructure was composed of α-Ti, α2-Ti3Al, γ-TiAl and TiAl2. A fully lamellar microstructure formed after annealing at 1350 °C. Most of the angles between the lamellar interface and the sheet plane are below 30°. Using thinner starting foils is favorable to produce sheets with fine microstructure.
基金Project(2017YFA0403802)supported by the National Key Research and Development Program of ChinaProject(51825401)supported by the National Natural Science Foundation of ChinaProject(2019TQ0076)supported by the China Postdoctoral Science Foundation。
文摘In order to improve mechanical properties and optimize composition of TiAl-Nb alloys, Ti46 Al5 Nb0.1 B alloys with different contents of Fe(0, 0.3, 0.5, 0.7, 0.9, and 1.1 at.%) were prepared by melting. Macro/microstructure and compression properties of the alloys were systematically investigated. Results show that Fe element can decrease the grain size, aggravate the Al-segregation and also form the Fe-rich B2 phase in the interdendritic area. Compressive testing results indicate that the Ti46 Al5 Nb0.1 B0.3 Fe alloy shows the highest ultimate compressive strength and fracture strain, which are 1869.5 MPa and 33.53%, respectively. The improved ultimate compression strength is ascribed to the grain refinement and solid solution strengthening of Fe, and the improved fracture strain is due to the reduced lattice tetragonality of γ phase and grain refinement of the alloys. However, excessive Fe addition decreases compressive strength and fracture strain, which is caused by the severe Al-segregation.
基金Project(GB09209)supported by the Science and Technology Bureau of Heilongjiang Province,China
文摘Minor Dy element was added into a Mg?4Y?3Nd?0.4Zr alloy,and its effects on the microstructure and the mechanicalproperties at elevated temperatures were investigated.Scanning electron microscope(SEM)and transmission electron microscope(TEM)were used to observe the microstructures.The results indicated that the as-cast eutectic and isolated cuboid-shaped Mg?REphases were Mg5RE and Mg3RE17,respectively,and distributed mainly along grain boundaries.After a solution treatment,theeutectic Mg5RE phases were dissolved into the matrix,whereas the Mg3RE17compound still remained.After peak aging,fineMg?RE phases were precipitated homogeneously within the matrix of the alloys containing Dy.Dy addition can result in asignificant improvement in the tensile strength at both room and elevated temperatures,and a slight decrease in the elongation.
基金Project(51741404)supported by the National Natural Science Foundation of ChinaProject(2017YFA0403802)supported by National Key Research and Development Program of China
文摘Ti43Al and Ti47Al alloys with different contents of zirconium were prepared by non-consumable vacuum arc melting furnace.The microstructure and mechanical properties were investigated.The results showed that Zr had no obvious effect on microstructure morphology of Ti43Al,while that of Ti47Al was modified from dendrites into equiaxed grains.The addition of Zr could refine the grains.Zr promoted the formation ofγphase significantly and the solubility values of Zr inγphase were 12.0%and 5.0%(molar fraction)in Ti43Al and Ti47Al,respectively.Zr-richγphase mainly formed throughβ→γin Ti43Al-xZr(molar fraction,%)andβ→α→γin Ti47Al-xZr(molar fraction,%).Fine-grain strengthening and solution strengthening were beneficial to improving the compressive strength while severe micro-segregation was detrimental to compressive properties.Large solubility of Zr was bad for ductility of alloys as well.The maximum compressive strengths of Ti43Al-xZr and Ti47Al-xZr were 1684.82 MPa(x=5.0%)and 2158.03 MPa(x=0.5%),respectively.The compressive strain fluctuated slightly in Ti43Al-xZr and reached the maximum value of 35.24%(x=0.5%)in Ti47Al-xZr.Both alloys showed brittle fracture.