针对情感分类问题中长句和短句具有不同的建模特点,提出了一种基于联合深度学习模型的情感分类方法。该方法融合长短期记忆(long-short term memory,LSTM)模型与卷积神经网络(convolutional neural network,CNN)对影视评论数据进行情感...针对情感分类问题中长句和短句具有不同的建模特点,提出了一种基于联合深度学习模型的情感分类方法。该方法融合长短期记忆(long-short term memory,LSTM)模型与卷积神经网络(convolutional neural network,CNN)对影视评论数据进行情感极性判别;采用LSTM对上下文进行建模,通过逐词迭代得到上下文的特征向量;采用CNN模型从词向量序列中自动发现特征,抽取局部特征并整合成全局特征来提高分类效果。所提出的方法在COAE2016评测的任务2的情感极性分类任务中,取得最高的系统准确率。展开更多
文摘针对情感分类问题中长句和短句具有不同的建模特点,提出了一种基于联合深度学习模型的情感分类方法。该方法融合长短期记忆(long-short term memory,LSTM)模型与卷积神经网络(convolutional neural network,CNN)对影视评论数据进行情感极性判别;采用LSTM对上下文进行建模,通过逐词迭代得到上下文的特征向量;采用CNN模型从词向量序列中自动发现特征,抽取局部特征并整合成全局特征来提高分类效果。所提出的方法在COAE2016评测的任务2的情感极性分类任务中,取得最高的系统准确率。