太阳能是一种绿色、清洁的能源.将可再生太阳能转化为热能驱动聚酯醇解反应,即发展光热催化聚酯醇解方法,实现废弃塑料转化为高纯度、高附加值单体,有望解决传统热催化体系效率低、能耗高的问题,实现废弃塑料的高效增值回收利用.一方面...太阳能是一种绿色、清洁的能源.将可再生太阳能转化为热能驱动聚酯醇解反应,即发展光热催化聚酯醇解方法,实现废弃塑料转化为高纯度、高附加值单体,有望解决传统热催化体系效率低、能耗高的问题,实现废弃塑料的高效增值回收利用.一方面,光热催化体系可满足传统热催化所需的反应温度,同时光热催化过程中存在的局域热效应,可进一步提升聚酯回收的催化活性,保障聚酯的高效醇解.另一方面,利用太阳能驱动光热催化聚酯醇解反应,不仅降低能耗,减少CO_(2)排放,还可以充分利用清洁能源,实现太阳能到化学能的高效转化.然而,催化剂的光热转化效率低、局域热效应弱以及催化活性低是限制其发展的挑战问题.本文采用模板法合成了ZIF-8纳米粒子,在ZIF-8表面包覆一层SiO_(2),经高温处理后得到一体化光热催化剂.内部碳材料在吸收太阳光后产生热能,而外层SiO_(2)可以阻止内部热的辐射损失,从而提高局域温度.此外,SiO_(2)包覆层可以抑制c-ZIF-8在高温热解过程中的聚集,使催化剂在催化反应过程中具有更好的分散性.优化后的光热催化剂(c-ZIF-8@25SiO_(2))在0.78 Wcm-2模拟太阳光照射30 min下的PET转化率为84.97%,是热催化反应性能的3.4倍.当反应时间延长至45 min时,PET转化率达到100%.动力学分析表明,光热催化PET醇解的活化能为59.35 k Jmol-1,低于大多文献报道值(通常>70 k J mol-1),更重要的是,其活化能也与热催化PET醇解的活化能(61.04 k Jmol-1)相近反应.上述结果表明,c-ZIF-8@25SiO_(2)纳米颗粒光热催化PET醇解和热催化PET醇解的反应路径可能是相同的,因此排除了光化学活化在光热催化中的贡献.此外,这种SiO_(2)包覆层也使内部催化剂具有较高的稳定性,其中PET转化率和对苯二甲酸乙二醇酯产率在5次循环后分别保持在初始值的98%和95%.在室外太阳光照射下进行PET醇解实验以及从混合塑料中选择性回收PET,进一步证明了c-ZIF-8@25SiO_(2)在光热催化PET醇解方面具有较好的用前景.技术经济分析表明,每回收1万吨PET,选择光热催化可节电6390000 k W·h,减少3089.59吨CO_(2)排放.综上,本文策略为增强光热催化中的局部加热效应提供了一种普适性方法,为构筑高效塑料回收提供理论指导及实验参考.展开更多
An electrochemical method was used to prepare Mg-Li-La alloys in a molten LiCl-KCl-KF-MgCl2 containing La2O3 at 943 K. The results showed preparation of Mg-Li-La alloys by electrolysis is feasible. The Mg-Li-La alloys...An electrochemical method was used to prepare Mg-Li-La alloys in a molten LiCl-KCl-KF-MgCl2 containing La2O3 at 943 K. The results showed preparation of Mg-Li-La alloys by electrolysis is feasible. The Mg-Li-La alloys were analyzed by means of X-ray diffraction (XRD), optical micrograph (OM) and scanning electron microscopy (SEM). XRD analysis indicates that α+Mg17La2, α+β+Mg17La2 and β+LaMg3 Mg-Li-La alloys with different lithium and lanthanum contents were obtained via galvanostatic electrolysis. The microstructures of typical α+Mg17La2 and β+LaMg3 phases of Mg-Li-La alloys were characterized by optical microscopy (OM) and scanning electron microscopy (SEM). The analysis of energy dispersive spectrometry (EDS) shows that the element of Mg distributes homogeneously in the Mg-Li-La alloy and the element of La mostly exists at grain boundaries to restrain the grain growth rate due to the larger ionic radius and lower electronegativity compared with Mg.展开更多
基金supported by the High Technology Research and Development Program of China(2011AA03A409)National Natural Science Foundation of China(21103033,21101040,91226201)+2 种基金China Postdoctoral Science Foundation(2013T60344)Fundamental Research Funds for the Central Universities,China(HEUCF201310012)Foundation for University Key Teacher of Heilongjiang Province of China(1253G016)~~
基金supported by the National Natural Science Foundation of China(Nos.52174362,51975207)Natural Science Foundation of Hunan Province,China(No.2023JJ10020)+1 种基金Xiangtan Special Project for Building a National Innovative City,China(No.CG-YB20221043)Yancheng“Talent Plan of Yellow Sea Pearl”for Leading Talent Project,China。
文摘太阳能是一种绿色、清洁的能源.将可再生太阳能转化为热能驱动聚酯醇解反应,即发展光热催化聚酯醇解方法,实现废弃塑料转化为高纯度、高附加值单体,有望解决传统热催化体系效率低、能耗高的问题,实现废弃塑料的高效增值回收利用.一方面,光热催化体系可满足传统热催化所需的反应温度,同时光热催化过程中存在的局域热效应,可进一步提升聚酯回收的催化活性,保障聚酯的高效醇解.另一方面,利用太阳能驱动光热催化聚酯醇解反应,不仅降低能耗,减少CO_(2)排放,还可以充分利用清洁能源,实现太阳能到化学能的高效转化.然而,催化剂的光热转化效率低、局域热效应弱以及催化活性低是限制其发展的挑战问题.本文采用模板法合成了ZIF-8纳米粒子,在ZIF-8表面包覆一层SiO_(2),经高温处理后得到一体化光热催化剂.内部碳材料在吸收太阳光后产生热能,而外层SiO_(2)可以阻止内部热的辐射损失,从而提高局域温度.此外,SiO_(2)包覆层可以抑制c-ZIF-8在高温热解过程中的聚集,使催化剂在催化反应过程中具有更好的分散性.优化后的光热催化剂(c-ZIF-8@25SiO_(2))在0.78 Wcm-2模拟太阳光照射30 min下的PET转化率为84.97%,是热催化反应性能的3.4倍.当反应时间延长至45 min时,PET转化率达到100%.动力学分析表明,光热催化PET醇解的活化能为59.35 k Jmol-1,低于大多文献报道值(通常>70 k J mol-1),更重要的是,其活化能也与热催化PET醇解的活化能(61.04 k Jmol-1)相近反应.上述结果表明,c-ZIF-8@25SiO_(2)纳米颗粒光热催化PET醇解和热催化PET醇解的反应路径可能是相同的,因此排除了光化学活化在光热催化中的贡献.此外,这种SiO_(2)包覆层也使内部催化剂具有较高的稳定性,其中PET转化率和对苯二甲酸乙二醇酯产率在5次循环后分别保持在初始值的98%和95%.在室外太阳光照射下进行PET醇解实验以及从混合塑料中选择性回收PET,进一步证明了c-ZIF-8@25SiO_(2)在光热催化PET醇解方面具有较好的用前景.技术经济分析表明,每回收1万吨PET,选择光热催化可节电6390000 k W·h,减少3089.59吨CO_(2)排放.综上,本文策略为增强光热催化中的局部加热效应提供了一种普适性方法,为构筑高效塑料回收提供理论指导及实验参考.
基金Projects (2009AA050702, 2011AA03A409, 2007CB200906) supported by Hi-tech Research and Development Program of ChinaProjects (21103033, 21101040, 21173060) supported the National Natural Science Foundation of ChinaProject (HEUCF201210002) supported the Fundamental Research Funds for the Central Universities, China
文摘An electrochemical method was used to prepare Mg-Li-La alloys in a molten LiCl-KCl-KF-MgCl2 containing La2O3 at 943 K. The results showed preparation of Mg-Li-La alloys by electrolysis is feasible. The Mg-Li-La alloys were analyzed by means of X-ray diffraction (XRD), optical micrograph (OM) and scanning electron microscopy (SEM). XRD analysis indicates that α+Mg17La2, α+β+Mg17La2 and β+LaMg3 Mg-Li-La alloys with different lithium and lanthanum contents were obtained via galvanostatic electrolysis. The microstructures of typical α+Mg17La2 and β+LaMg3 phases of Mg-Li-La alloys were characterized by optical microscopy (OM) and scanning electron microscopy (SEM). The analysis of energy dispersive spectrometry (EDS) shows that the element of Mg distributes homogeneously in the Mg-Li-La alloy and the element of La mostly exists at grain boundaries to restrain the grain growth rate due to the larger ionic radius and lower electronegativity compared with Mg.