期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
敏捷开发方法的几个关键原则 被引量:3
1
作者 赵菲 幺阔强 《科技创新导报》 2008年第35期163-163,共1页
通过掌握敏捷方法的主要目标、观点和原则,并结合实际的管理信息系统项目开发,我们在原来敏捷方法的基础上又总结并改进了如,客户加入、迭代、80/20原则及舍弃等几个关键原则。实践证明,采用敏捷方法的观点和原则进行必要的改进,能取得... 通过掌握敏捷方法的主要目标、观点和原则,并结合实际的管理信息系统项目开发,我们在原来敏捷方法的基础上又总结并改进了如,客户加入、迭代、80/20原则及舍弃等几个关键原则。实践证明,采用敏捷方法的观点和原则进行必要的改进,能取得项目开发的成功。 展开更多
关键词 瀑布型开发 敏捷方法 迭代 80/20原则 舍弃
下载PDF
DAO模式在数据访问中的应用
2
作者 幺阔强 赵菲 《中国新技术新产品》 2008年第14期12-12,共1页
J2EE模型提供了一个很好的企业应用框架及解决方法,提供了灵活的技术选择,由于所有的J2EE应用都需要访问持久性数据资源,因此实现和封装J2EE数据访问层越来越成为构建稳定、健壮和灵活的J2EE应用的基础。论文重点介绍了如何使用DAO模式... J2EE模型提供了一个很好的企业应用框架及解决方法,提供了灵活的技术选择,由于所有的J2EE应用都需要访问持久性数据资源,因此实现和封装J2EE数据访问层越来越成为构建稳定、健壮和灵活的J2EE应用的基础。论文重点介绍了如何使用DAO模式来解决数据访问客户端对持久性存储的问题,并给出了一种解决DAO模式对象类型依赖问题的方法。 展开更多
关键词 数据访问对象(DAO) J2EE ENTERPRISE JavaBean(EJB)
下载PDF
Modeling and analysis of cloud computing system survivability based on Bio-PEPA 被引量:1
3
作者 Zhao Guosheng Ren Mengqi +1 位作者 Wang Jian Liao Yiwei 《Journal of Southeast University(English Edition)》 EI CAS 2018年第1期21-27,共7页
For the cloud computing system,combined wth the memory function and incomplete matching of the biological immune system,a formal modeling and analysis method of the cloud computing system survivability is proposed by ... For the cloud computing system,combined wth the memory function and incomplete matching of the biological immune system,a formal modeling and analysis method of the cloud computing system survivability is proposed by analyzing the survival situation of critical cloud services.First,on the basis of the SAIR(susceptible,active,infected,recovered)model,the SEIRS(susceptible,exposed,infected,recovered,susceptible)model and the vulnerability diffusion model of the distributed virtual system,the evolution state of the virus is divided into six types,and then the diffusion rules of the virus in the service domain of the cloud computing system and the propagation rules between service domains are analyzee.Finally,on the basis of Bio-PEPA(biological-performance evaluation process algebra),the formalized modeling of the survivability evolution of critical cloud services is made,and the SLIRAS(susceptible,latent,infected,recovered,antidotal,susceptible)model is obtained.Based on the stochastic simulation and the ODEs(ordinary differential equations)simulation of the Bio-PEPA model,the sensitivity parameters of the model are analyzed from three aspects,namely,the virus propagation speed of inter-domain,recovery ability and memory ability.The results showthat the proposed model has high approximate fitting degree to the actual cloud computing system,and it can well reflect the survivable change of the system. 展开更多
关键词 cloud computing system Bio-I>EPA(biologicalperformance evaluation process algebra) SURVIVABILITY stochastic simulation
下载PDF
A recognition model of survival situations for survivable systems
4
作者 Zhao Guosheng Shao Zihao +1 位作者 Wang Jian Li Yingmei 《Journal of Southeast University(English Edition)》 EI CAS 2018年第3期288-294,共7页
Due to the lack of pre-recognition and post- prediction in existing survivable systems, a recognition model of survival situations for survivable systems is proposed. First, the survival situation data is clustered in... Due to the lack of pre-recognition and post- prediction in existing survivable systems, a recognition model of survival situations for survivable systems is proposed. First, the survival situation data is clustered into several survival clusters with different service levels based on the Ward method, and then the survival clusters are classified and recognized by means of the error-eliminating decision-making method, which can realize the pre-recognition of the system's survival situation. Secondly, the differentiated survival situation data is used to generate stationary predicting sequences. The autoregressive integrated moving average (ARIMA) model is constructed, and the stability, randomness and reversibility index of the model are verified by the auto- correlation function and partial auto-correlation function. Finally, fuzzy particles and the residual correction for the support vector regression (SVR) model are applied to realize the post-prediction of the survival situation. Compared with traditional decision-making methods, the simulation experiments show that the pre-recognition module can not only cluster the survival situation data and identify the service ranks, but can also recognize the illegal users. According to the prediction of abnormal situations numbers and residual correction, the model can effectively realize the post- prediction of survival situations for survivable systems. 展开更多
关键词 SURVIVABILITY RECOGNITION fuzzy particle residual correction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部