期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于LSI和SVM的文本分类研究
被引量:
8
1
作者
刘美茹
《计算机工程》
CAS
CSCD
北大核心
2007年第15期217-219,共3页
文本分类技术是文本数据挖掘的基础和核心,是基于自然语言处理技术和机器学习算法的一个具体应用。特征选择和分类算法是文本分类中两个最关键的技术,该文提出了利用潜在语义索引进行特征提取和降维,并结合支持向量机(SVM)算法进行多类...
文本分类技术是文本数据挖掘的基础和核心,是基于自然语言处理技术和机器学习算法的一个具体应用。特征选择和分类算法是文本分类中两个最关键的技术,该文提出了利用潜在语义索引进行特征提取和降维,并结合支持向量机(SVM)算法进行多类分类,实验结果显示与向量空间模型(VSM)结合SVM方法和LSI结合K近邻(KNN)方法相比,取得了更好的效果,在文本类别数较少、类别划分比较清晰的情况下可以达到实用效果。
展开更多
关键词
特征提取
潜在语义索引
支持向量机
下载PDF
职称材料
题名
基于LSI和SVM的文本分类研究
被引量:
8
1
作者
刘美茹
机构
哈尔滨铁道职业技术学院计算机教研室
出处
《计算机工程》
CAS
CSCD
北大核心
2007年第15期217-219,共3页
文摘
文本分类技术是文本数据挖掘的基础和核心,是基于自然语言处理技术和机器学习算法的一个具体应用。特征选择和分类算法是文本分类中两个最关键的技术,该文提出了利用潜在语义索引进行特征提取和降维,并结合支持向量机(SVM)算法进行多类分类,实验结果显示与向量空间模型(VSM)结合SVM方法和LSI结合K近邻(KNN)方法相比,取得了更好的效果,在文本类别数较少、类别划分比较清晰的情况下可以达到实用效果。
关键词
特征提取
潜在语义索引
支持向量机
Keywords
feature extraction
latent semantic index(LSI)
support vector machine(SVM)
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于LSI和SVM的文本分类研究
刘美茹
《计算机工程》
CAS
CSCD
北大核心
2007
8
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部