期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于机器视觉和工艺参数的针芽形绿茶外形品质评价 被引量:25
1
作者 董春旺 朱宏凯 +3 位作者 周小芬 袁海波 赵杰文 陈全胜 《农业机械学报》 EI CAS CSCD 北大核心 2017年第9期38-45,共8页
外形是针芽形绿茶的关键感官评价指标,通常依据色泽、条形、嫩度和匀整度等表象特征进行人工评审,难以做到精准、客观和量化评价。本文以自动化生产线机制的针芽形绿茶为研究对象,基于茶叶品质、形成工艺和视觉形态等内外因素,构建了外... 外形是针芽形绿茶的关键感官评价指标,通常依据色泽、条形、嫩度和匀整度等表象特征进行人工评审,难以做到精准、客观和量化评价。本文以自动化生产线机制的针芽形绿茶为研究对象,基于茶叶品质、形成工艺和视觉形态等内外因素,构建了外形品质的智能感官评价方法。首先,在线采集在制品的17个机制工艺参数和成品茶的图像,进行图像特征提取,选取9个颜色特征和6个纹理特征。进而,通过与专家感官评分进行关联分析,明确了与感官品质显著相关的特征变量。为获取高效的评价模型,采用偏最小二乘法(PLS)、极限学习机(ELM)和强预测器集成算法(ELM-Ada Boost)3种多元校正方法,分别建立了基于工艺或图像特征的针芽形绿茶外形感官的量化评价模型。建模结果表明,基于图像特征建立的ELM-Ada Boost模型(Rp=0.892,RPD大于2),其预测性能优于其他模型,且具有更小的RMSEP(0.874)、Bias(-0.148)、SEP(0.226)和CV(0.018)值。同时,非线性模型的预测性能均高于PLS线性模型,能更好地表征工艺参数、图像信息与感官评分之间的解析关系,且建模速度更快(0.014~0.281 s)。而Ada Boost法作为一种混合迭代算法,能进一步提升ELM模型的精度和泛化能力。结果表明,基于机器视觉和工艺评价针芽形绿茶外形品质是可行的,为拓展茶叶感官品质评价方法和专家工艺决策支持系统研制,提供理论依据和数据支撑。 展开更多
关键词 针芽形绿茶 机器视觉 外形 感官品质 智能算法 非线性
下载PDF
基于RSM和BP-AdaBoost-GA的红茶发酵性能参数优化 被引量:11
2
作者 董春旺 赵杰文 +3 位作者 朱宏凯 袁海波 叶阳 陈全胜 《农业机械学报》 EI CAS CSCD 北大核心 2017年第5期335-342,共8页
为明确自行设计的滚筒式红茶发酵机性能参数,以无量纲化的综合评分为发酵品质评价指标,采用响应面法和基于改进型神经网络的遗传算法(BP-AdaBoost-GA)对影响发酵品质的3个因素(发酵温度、发酵时间、翻拌间隔)进行优化,并对2种方法的优... 为明确自行设计的滚筒式红茶发酵机性能参数,以无量纲化的综合评分为发酵品质评价指标,采用响应面法和基于改进型神经网络的遗传算法(BP-AdaBoost-GA)对影响发酵品质的3个因素(发酵温度、发酵时间、翻拌间隔)进行优化,并对2种方法的优化效果进行比较。结果表明,各因素对发酵品质的影响重要性顺序为:发酵温度、翻拌间隔、发酵时间;采用响应面法优化,当发酵温度、发酵时间、翻拌间隔分别为25℃、150 min、20 min时,综合评分预测值和实际值分别为0.863和0.856,相对误差为0.8%;而采用BP-AdaBoost-GA优化,当发酵温度、发酵时间、翻拌间隔分别为27℃、170 min、25 min时,预测值和实际值分别为0.871和0.868,相对误差为0.3%;BPAdaBoost预测模型的决定系数和相对分析误差分别为0.994和18.456,高于响应面法的0.988和9.577,且预测均方根误差较低,为0.017。在红茶发酵工艺的参数优化中,采用BP-AdaBoost-GA方法能比响应面法更好地拟合模型,以及在全局变量范围内推导最优发酵条件。 展开更多
关键词 红茶发酵 参数优化 ADABOOST算法 遗传算法
下载PDF
红茶感官品质及成分近红外光谱快速检测模型建立 被引量:37
3
作者 董春旺 梁高震 +2 位作者 安霆 王近近 朱宏凯 《农业工程学报》 EI CAS CSCD 北大核心 2018年第24期306-313,共8页
以在发酵过程中小叶种工夫红茶为研究对象,分别建立了基于近红外光谱检测技术的感官品质评分和理化品质指标(茶黄素、茶红素、茶褐素、儿茶素和酚氨比)的定量分析模型。在模型建立过程中,探讨了特征变量优选方法对预测模型的影响。首先... 以在发酵过程中小叶种工夫红茶为研究对象,分别建立了基于近红外光谱检测技术的感官品质评分和理化品质指标(茶黄素、茶红素、茶褐素、儿茶素和酚氨比)的定量分析模型。在模型建立过程中,探讨了特征变量优选方法对预测模型的影响。首先,对获取的近红外光谱数据进行标准正态变量变换法(standard normal Z transformation,SNV)预处理,进而采用联合区间偏最小二乘回归(synergy interval PLS,Si-PLS)、随机蛙跳算法(shuffled frog leaping algorithm,SFLA)、竞争性自适应权重取样法(competitiveadaptivereweightedsampling,CARS)和连续投影(successive projections algorithm,SPA),筛选出各品质指标的最优特征波长变量;最后基于优选波长分别建立各发酵品质指标的偏最小二乘法(partial least squares regression,PLS)线性预测模型和支持向量机(support vector regression,SVR)非线性预测模型。模型结果比较表明,Si、CARS、SFLA和SPA等变量筛选方法可有效压缩变量,以及进一步提高模型精度。非线性模型的预测均方根误差值(root-mean-square error of prediction,RMSEP)均明显小于PLS模型,相关性系数(correlation coefficient,R)和相对分析误差(relative percent deviation,RPD)均高于PLS模型。对于红茶发酵品质的检测上,非线性模型性能优于线性模型。感官品质、茶褐素和儿茶素的最优变量SVR预测模型的RPD值分别为3.923、3.234和5.462,酚氨比和茶红素模型的RPD值分别为2.815和2.223。除茶黄素的评价模型外(RPD为1.77),基于最优特征波长的各品质指标SVR模型的RPD值均大于2,表明模型具有极好的预测性能。研究结果为实现工夫红茶发酵品质的近红外光谱快速检测的实际应用奠定理论基础。 展开更多
关键词 近红外光谱 发酵 无损检测 红茶 发酵品质 变量筛选 化学计量学
下载PDF
松仁蛋白的研究进展 被引量:1
4
作者 徐冰心 王婷婷 +2 位作者 赵梓辰 张惠玲 刘敦华 《安徽农业科学》 CAS 2017年第33期81-82,125,共3页
红松种子仁是优质的植物资源,其所含的蛋白质更是非常优质的蛋白质来源,近年来得到国内外学者的广泛关注和研究。综述了松仁蛋白的提取方法、理化性质和生理活性以及主要成分的生理功能,以期为松仁蛋白进一步的开发利用提供参考。
关键词 松仁蛋白 抗氧化性 多肽
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部