为了研究RLC电路弹簧耦合系统的非线性振动,用统一的能量法考虑机电耦合系统的电场能、磁场能和机械能,应用拉格朗日-麦克斯韦方程建立起一个受到简谐激励的RLC电路弹簧耦合系统的数学模型,该机电耦合系统具有平方非线性。根据线性振动...为了研究RLC电路弹簧耦合系统的非线性振动,用统一的能量法考虑机电耦合系统的电场能、磁场能和机械能,应用拉格朗日-麦克斯韦方程建立起一个受到简谐激励的RLC电路弹簧耦合系统的数学模型,该机电耦合系统具有平方非线性。根据线性振动理论对系统运动微分方程组进行分析,得到了一个受简谐激励的M ath ieu方程,通过积分变换,得到了M ath ieu方程的级数形式解。分别用龙格库塔法和级数法计算了在无外激励的情况下,有阻尼和无阻尼时系统分别对应的时间响应,通过M atlab软件进行模拟分析,发现二者得到的响应曲线吻合,证明了级数法对分析类似系统是个很有效的手段。展开更多
文摘为了研究RLC电路弹簧耦合系统的非线性振动,用统一的能量法考虑机电耦合系统的电场能、磁场能和机械能,应用拉格朗日-麦克斯韦方程建立起一个受到简谐激励的RLC电路弹簧耦合系统的数学模型,该机电耦合系统具有平方非线性。根据线性振动理论对系统运动微分方程组进行分析,得到了一个受简谐激励的M ath ieu方程,通过积分变换,得到了M ath ieu方程的级数形式解。分别用龙格库塔法和级数法计算了在无外激励的情况下,有阻尼和无阻尼时系统分别对应的时间响应,通过M atlab软件进行模拟分析,发现二者得到的响应曲线吻合,证明了级数法对分析类似系统是个很有效的手段。