期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种基于DNN的少儿英语口语评分系统的改进 被引量:5
1
作者 王欣欣 马发民 《信息技术》 2020年第9期46-50,共5页
由于目前基于深层神经网络隐马尔可夫模型(CD-DNN-HMMs)自动口语评分系统对少儿口语的兼容性不是很高,存在一定程度的误差,因此提出了DNN的语音识别系统,其主要组成是线性整流函数。实验结果表明,与高斯混合模型(GMM-HMMs)相比,即使该... 由于目前基于深层神经网络隐马尔可夫模型(CD-DNN-HMMs)自动口语评分系统对少儿口语的兼容性不是很高,存在一定程度的误差,因此提出了DNN的语音识别系统,其主要组成是线性整流函数。实验结果表明,与高斯混合模型(GMM-HMMs)相比,即使该模型训练了8倍以上的数据,但其识别精度也远低于基于DNN的识别方法,而且DNN方法的相对功耗降低了31%。这进一步提高了提取特征的质量和最终的英语口语水平分数,并将整体的自动评价性能提高到了人工的绩效水平,并且在儿童英语语音中常见的嘈杂和/或不清楚反应的情况有了很大的改善。 展开更多
关键词 语音识别 DNN 线性整流函数 儿童英语
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部