研究旨为橘小实蝇在四川盆地的检疫检测、综合防治及风险分析提供科学决策参考。运用基于最大熵(Maxent)、遗传算法(Garp)、环境包络原理(Bioclim)和Gower距离算法(Domain)的4种生态位预测模型预测橘小实蝇在四川盆地潜在适生区,并采用...研究旨为橘小实蝇在四川盆地的检疫检测、综合防治及风险分析提供科学决策参考。运用基于最大熵(Maxent)、遗传算法(Garp)、环境包络原理(Bioclim)和Gower距离算法(Domain)的4种生态位预测模型预测橘小实蝇在四川盆地潜在适生区,并采用受试者工作特征曲线(ROC)和Kappa统计量分析方法检验模型预测效果。结果表明,4种模型的ROC曲线下的面积AUC(area under the ROC curve)平均值均大于0.9,Kappa统计量平均值亦大于0.75,预测模型具有较高的预测精度。通过“刀切法”分析得出最干季降水量、最干季平均温度、温度季节性变化和温度日较差是主导橘小实蝇潜在分布的关键环境变量,对当前橘小实蝇分布格局的形成起决定性作用。4种模型预测橘小实蝇适生面积和位置相差较大,但均包含川中丘陵区、川东平行岭谷区和盆边南部低山区,且川中丘陵区东部、川东平行岭谷区和盆边南部低山区的西部均为高、中适生区集中区域。由此可见,橘小实蝇在四川盆地适生范围较广,鉴于柑橘对四川盆地经济的重要性,当地相关部门应加强对其的检测检疫工作,避免造成较大的损失。展开更多
金沙江流域作为我国重要的生态屏障和清洁能源输出地,其下游干热河谷地段是高温频发地区,针对该区域开展高温天气环流特征和诊断对提高高温灾害预报水平和提高该区域能源调度效率具有重要意义。利用1981—2020年逐日最高气温资料和欧洲...金沙江流域作为我国重要的生态屏障和清洁能源输出地,其下游干热河谷地段是高温频发地区,针对该区域开展高温天气环流特征和诊断对提高高温灾害预报水平和提高该区域能源调度效率具有重要意义。利用1981—2020年逐日最高气温资料和欧洲中期天气预报中心(the European Centre for Medium-Range Weather Forecasts,ECMWF)第五代大气再分析数据集ERA5(Reanalysis v5),通过K-means聚类分析法对金沙江下游高温天气环流形势进行分型,并对各类高温天气的动力和热力因子进行诊断,提炼出各型高温的物理量阈值。结果表明:金沙江下游高温天气的环流背景可分为暖脊型、副热带高压-青藏高压型和青藏高压型3种类型。高温期间中高层均有≥0.25 Pa·s^(-1)的下沉气流,天空晴朗无云,晴空辐射强,且近地面受到≤800 hPa强度的热低压直接加热作用。热力诊断发现金沙江下游高温主要由非绝热加热引起,温度平流对局地升温的贡献为负,垂直绝热变化贡献接近于0,但下沉气流有利于地面接收更多太阳辐射,使近地层非绝热加热增加,从而导致金沙江下游出现高温天气。展开更多
文摘研究旨为橘小实蝇在四川盆地的检疫检测、综合防治及风险分析提供科学决策参考。运用基于最大熵(Maxent)、遗传算法(Garp)、环境包络原理(Bioclim)和Gower距离算法(Domain)的4种生态位预测模型预测橘小实蝇在四川盆地潜在适生区,并采用受试者工作特征曲线(ROC)和Kappa统计量分析方法检验模型预测效果。结果表明,4种模型的ROC曲线下的面积AUC(area under the ROC curve)平均值均大于0.9,Kappa统计量平均值亦大于0.75,预测模型具有较高的预测精度。通过“刀切法”分析得出最干季降水量、最干季平均温度、温度季节性变化和温度日较差是主导橘小实蝇潜在分布的关键环境变量,对当前橘小实蝇分布格局的形成起决定性作用。4种模型预测橘小实蝇适生面积和位置相差较大,但均包含川中丘陵区、川东平行岭谷区和盆边南部低山区,且川中丘陵区东部、川东平行岭谷区和盆边南部低山区的西部均为高、中适生区集中区域。由此可见,橘小实蝇在四川盆地适生范围较广,鉴于柑橘对四川盆地经济的重要性,当地相关部门应加强对其的检测检疫工作,避免造成较大的损失。
文摘金沙江流域作为我国重要的生态屏障和清洁能源输出地,其下游干热河谷地段是高温频发地区,针对该区域开展高温天气环流特征和诊断对提高高温灾害预报水平和提高该区域能源调度效率具有重要意义。利用1981—2020年逐日最高气温资料和欧洲中期天气预报中心(the European Centre for Medium-Range Weather Forecasts,ECMWF)第五代大气再分析数据集ERA5(Reanalysis v5),通过K-means聚类分析法对金沙江下游高温天气环流形势进行分型,并对各类高温天气的动力和热力因子进行诊断,提炼出各型高温的物理量阈值。结果表明:金沙江下游高温天气的环流背景可分为暖脊型、副热带高压-青藏高压型和青藏高压型3种类型。高温期间中高层均有≥0.25 Pa·s^(-1)的下沉气流,天空晴朗无云,晴空辐射强,且近地面受到≤800 hPa强度的热低压直接加热作用。热力诊断发现金沙江下游高温主要由非绝热加热引起,温度平流对局地升温的贡献为负,垂直绝热变化贡献接近于0,但下沉气流有利于地面接收更多太阳辐射,使近地层非绝热加热增加,从而导致金沙江下游出现高温天气。