利用溶胶-凝胶法在La Ni O3/Si O2/Si衬底上制备了掺Mn量为0%、1%、5%、10%(质量分数)的0.7Bi Fe O3-0.3Pb Ti O3(BFMPT7030/x,x=0,0.01,0.05,0.1)薄膜。XRD测试表明,薄膜均完全结晶,呈现高度(100)择优取向。通过对薄膜晶体结构分...利用溶胶-凝胶法在La Ni O3/Si O2/Si衬底上制备了掺Mn量为0%、1%、5%、10%(质量分数)的0.7Bi Fe O3-0.3Pb Ti O3(BFMPT7030/x,x=0,0.01,0.05,0.1)薄膜。XRD测试表明,薄膜均完全结晶,呈现高度(100)择优取向。通过对薄膜晶体结构分析,发现BFMPT7030/0.05薄膜具有最小的晶粒尺寸(258 nm)及最小的晶胞体积(61.25×10-3 nm3)。SEM测试结果显示样品晶粒生长充分,晶粒尺寸在150~300 nm之间。铁电性能测试结果表明,当Mn含量为5%时,铁电性能较好,电滞回线形状最好,最为饱和。漏电流测试结果表明随着掺Mn量增加,BFMPT7030薄膜的漏电流随电场增大而增加的趋势减弱。展开更多
文摘利用溶胶-凝胶法在La Ni O3/Si O2/Si衬底上制备了掺Mn量为0%、1%、5%、10%(质量分数)的0.7Bi Fe O3-0.3Pb Ti O3(BFMPT7030/x,x=0,0.01,0.05,0.1)薄膜。XRD测试表明,薄膜均完全结晶,呈现高度(100)择优取向。通过对薄膜晶体结构分析,发现BFMPT7030/0.05薄膜具有最小的晶粒尺寸(258 nm)及最小的晶胞体积(61.25×10-3 nm3)。SEM测试结果显示样品晶粒生长充分,晶粒尺寸在150~300 nm之间。铁电性能测试结果表明,当Mn含量为5%时,铁电性能较好,电滞回线形状最好,最为饱和。漏电流测试结果表明随着掺Mn量增加,BFMPT7030薄膜的漏电流随电场增大而增加的趋势减弱。