Karst areas in Southwest China, with Guizhou as the focal center, are confronted with ecological deterioration and large areas of rocky desertification. Human activities are defined as the driving force behind the soi...Karst areas in Southwest China, with Guizhou as the focal center, are confronted with ecological deterioration and large areas of rocky desertification. Human activities are defined as the driving force behind the soil erosion. Further, local farmers in the area suffer from poverty due to a lack of drinking water, food and a weak living environment. Over one-third of national poverty-stricken counties occur in this part of China. To balance ecological protection and economic development in the region and help local farmers out of poverty we propose integrated controls and discuss on ground water exploration and sustainable use, soil conservation and remediation, and vegetation restoration (especially economic plant species) in this paper.展开更多
Limestone soil in karst areas is the product of weathering and carbonate rock dissolution in tropical and subtropical regions. Limestone soil in karst regions has a Ca-rich alkaline geochemical environment, but the ch...Limestone soil in karst areas is the product of weathering and carbonate rock dissolution in tropical and subtropical regions. Limestone soil in karst regions has a Ca-rich alkaline geochemical environment, but the characteristics of calcium speciation in limestone soil remain unclear. Here, to study changes in calcium speciation in soil across seasons in a karst area, different geomorphological positions and soil samples were collected from the Yaji karst experimental site. Using European Community Bureau of Reference (BCR) methods, we analyzed and discuss soil calcium speciation and seasonal migration characteristics. We found that total soil Ca content was 2.80-11.75 g kg^-1, with an average of 5.25±0.68 g kg^-1 (mean±SE). The order of content of each Ca speciation is extractable-Ca〉reducible-Ca〉residual-Ca〉oxidizable-Ca. In addition to oxidizable-Ca, other Ca species had a positive correlation with total calcium. The calcium content and various forms of calcium content decreased gradually with changing season, but in addition to differences in residual calcium across seasons, total calcium and other forms of calcium across seasons were not different. Total calcium and different forms of calcium content were highest at sloped areas; slopes and other landforms were different but differences between plain, saddle and depression areas were not significant.展开更多
In this paper, responses of germination physiology of pigeon pea (Cajanus cajan) seeds to drought stress in karst water environment and non-karst (allogenic) water environment were studied to explore the adaptabil...In this paper, responses of germination physiology of pigeon pea (Cajanus cajan) seeds to drought stress in karst water environment and non-karst (allogenic) water environment were studied to explore the adaptability of pigeon pea to karst environment. The results showed that: (i) Under drought stress of 20% PEG- 6000, the germination rate, vigor index, germination index and biomass of pigeon pea seeds on day 7 cultivated with karst water were all greater than that of the allogenic water treatment group, while the seed germination stress index was significantly smaller than that of the allogenic water treatment group, suggesting that karst water environment was more favorable to pigeon pea seed germination. (ii) Without drought stress, the malondialdehyde (MDA) and superoxide dismutase (SOD) activities of pigeon pea seeds cultivated with karst water were all smaller than that of the allogenic water group. However, under drought stress, the SOD activity was significantly higher than that of allogenic water group, suggesting pigeon pea SOD in karst water was able to more rapidly respond to external drought stress, and increase its own activity to reduce the damage to the plants. And (iii) with and without drought stress, the soluble protein level of the karst water group was higher than that of the allogenic water group, while the free amino acid level was lower than that of the allogenic water group. This difference was more significant with the presence of drought stress, suggesting that the karst water environment was more favorable to the accumulation of soluble proteins and thus produced larger biomass. Hence, pigeon pea is a tree species that is adapted to high-calcium, alkaline environments in karst areas, and is of great significance for the revegetation and rocky desertification control in mountainous karst areas.展开更多
Limestone soil is a poor quality soil with a low rate of nutrient supply due to the accumulation of organic carbon. Here, we examined the degradation of maize straw in limestone soil and red soil using indoor simulati...Limestone soil is a poor quality soil with a low rate of nutrient supply due to the accumulation of organic carbon. Here, we examined the degradation of maize straw in limestone soil and red soil using indoor simulation. Dynamic testing was conducted on soil chemical properties and soil fertility. We found that the degradation rate of straw in karst soil is higher than for non-karst soil. The highest degradation rate of straw occurred during the first 60 d, after which it rose slowly and balanced out at 98 d. The peak value of degradation of straw in karst soil was found at 28 d, while that in non-karst soil occurred at 42 d. The total period of degradation lasted 160 d; the degradation rate of straw in karst soil and non-karst soil was 77% and 75%, respectively. During the period of straw degradation, the pH of soil tended to decrease in the early stage and rise slowly in later stages and this is consistent with the pattern of degradation products during different stages of straw degradation. Straw return to fields can increase soil fertility, and the growth rate of available N and K content is significant. Compared to karst soil, the content of various fertility indicators in non-karst areas were lower according to total content tests, although the increase (percentage) in nonkarst area was higher; available P and K content were found to be higher in non-karst areas according to availability tests. Some available nutrients Jn straw return can be more readily released in non-karst soil, while karst soil can contribute to the accumulation of total nutrient content due to its special soil texture features, the firm binding of many nutrients with clay minerals and the slow supply of nutrients.展开更多
基金the Project of the China Geological Survey(No.12120113005300)the Ministry of Land and Resources(No.201211086-05)
文摘Karst areas in Southwest China, with Guizhou as the focal center, are confronted with ecological deterioration and large areas of rocky desertification. Human activities are defined as the driving force behind the soil erosion. Further, local farmers in the area suffer from poverty due to a lack of drinking water, food and a weak living environment. Over one-third of national poverty-stricken counties occur in this part of China. To balance ecological protection and economic development in the region and help local farmers out of poverty we propose integrated controls and discuss on ground water exploration and sustainable use, soil conservation and remediation, and vegetation restoration (especially economic plant species) in this paper.
基金Natural Scientific Foundation for Young Scientists of China(No.41402326)Natural Scientific Foundation for Young Scientists of Guangxi Zhuang Autonomous Region of China(No.2013GXNSFBA019217)+3 种基金the Natural Scientific Foundation of Guangxi Zhuang Autonomous Region of China(No.Guikehe14125008-2-1)the China Geological Survey(Nos.1212010911062,S-2010-KP03-07-02 and 12120113005300)the Ministry of Land and Resources(No.201211086-05)Institute of Karst Geology,CAGS(No.2012005)
文摘Limestone soil in karst areas is the product of weathering and carbonate rock dissolution in tropical and subtropical regions. Limestone soil in karst regions has a Ca-rich alkaline geochemical environment, but the characteristics of calcium speciation in limestone soil remain unclear. Here, to study changes in calcium speciation in soil across seasons in a karst area, different geomorphological positions and soil samples were collected from the Yaji karst experimental site. Using European Community Bureau of Reference (BCR) methods, we analyzed and discuss soil calcium speciation and seasonal migration characteristics. We found that total soil Ca content was 2.80-11.75 g kg^-1, with an average of 5.25±0.68 g kg^-1 (mean±SE). The order of content of each Ca speciation is extractable-Ca〉reducible-Ca〉residual-Ca〉oxidizable-Ca. In addition to oxidizable-Ca, other Ca species had a positive correlation with total calcium. The calcium content and various forms of calcium content decreased gradually with changing season, but in addition to differences in residual calcium across seasons, total calcium and other forms of calcium across seasons were not different. Total calcium and different forms of calcium content were highest at sloped areas; slopes and other landforms were different but differences between plain, saddle and depression areas were not significant.
基金National Natural Science Foundation of China(41302289)the Natural Science Foundation of Guangxi(2014GXNSFBA118225)+1 种基金the Project of the China Geological Survey(12120113005300)the Ministry of Land and Resource(201211086-05)
文摘In this paper, responses of germination physiology of pigeon pea (Cajanus cajan) seeds to drought stress in karst water environment and non-karst (allogenic) water environment were studied to explore the adaptability of pigeon pea to karst environment. The results showed that: (i) Under drought stress of 20% PEG- 6000, the germination rate, vigor index, germination index and biomass of pigeon pea seeds on day 7 cultivated with karst water were all greater than that of the allogenic water treatment group, while the seed germination stress index was significantly smaller than that of the allogenic water treatment group, suggesting that karst water environment was more favorable to pigeon pea seed germination. (ii) Without drought stress, the malondialdehyde (MDA) and superoxide dismutase (SOD) activities of pigeon pea seeds cultivated with karst water were all smaller than that of the allogenic water group. However, under drought stress, the SOD activity was significantly higher than that of allogenic water group, suggesting pigeon pea SOD in karst water was able to more rapidly respond to external drought stress, and increase its own activity to reduce the damage to the plants. And (iii) with and without drought stress, the soluble protein level of the karst water group was higher than that of the allogenic water group, while the free amino acid level was lower than that of the allogenic water group. This difference was more significant with the presence of drought stress, suggesting that the karst water environment was more favorable to the accumulation of soluble proteins and thus produced larger biomass. Hence, pigeon pea is a tree species that is adapted to high-calcium, alkaline environments in karst areas, and is of great significance for the revegetation and rocky desertification control in mountainous karst areas.
基金National Natural Science Foundation of China(41302289)the Natural Science Foundation of Guangxi(2014GXNSFBA118225)+1 种基金the Project of the China Geological Survey(12120113005300)the Ministry of Land and Resource(201211086-05)
文摘Limestone soil is a poor quality soil with a low rate of nutrient supply due to the accumulation of organic carbon. Here, we examined the degradation of maize straw in limestone soil and red soil using indoor simulation. Dynamic testing was conducted on soil chemical properties and soil fertility. We found that the degradation rate of straw in karst soil is higher than for non-karst soil. The highest degradation rate of straw occurred during the first 60 d, after which it rose slowly and balanced out at 98 d. The peak value of degradation of straw in karst soil was found at 28 d, while that in non-karst soil occurred at 42 d. The total period of degradation lasted 160 d; the degradation rate of straw in karst soil and non-karst soil was 77% and 75%, respectively. During the period of straw degradation, the pH of soil tended to decrease in the early stage and rise slowly in later stages and this is consistent with the pattern of degradation products during different stages of straw degradation. Straw return to fields can increase soil fertility, and the growth rate of available N and K content is significant. Compared to karst soil, the content of various fertility indicators in non-karst areas were lower according to total content tests, although the increase (percentage) in nonkarst area was higher; available P and K content were found to be higher in non-karst areas according to availability tests. Some available nutrients Jn straw return can be more readily released in non-karst soil, while karst soil can contribute to the accumulation of total nutrient content due to its special soil texture features, the firm binding of many nutrients with clay minerals and the slow supply of nutrients.