期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于优化Adaboost迭代过程的SVM集成算法
1
作者
田一明
陈伟
单新颖
《无线互联科技》
2017年第15期106-108,共3页
为提高Adaboost算法迭代过程中生成基分类器的分类精度以及简化整个集成学习系统的复杂度,文章提出了一种优化Adaboost迭代过程的SVM集成算法。该算法提出了一种在其迭代过程中加入样本选择和特征选择的集成方法。通过均值近邻算法对样...
为提高Adaboost算法迭代过程中生成基分类器的分类精度以及简化整个集成学习系统的复杂度,文章提出了一种优化Adaboost迭代过程的SVM集成算法。该算法提出了一种在其迭代过程中加入样本选择和特征选择的集成方法。通过均值近邻算法对样本进行选择,并利用相对熵法进行特征选择,最后利用优化得到的特征样本子集对基分类器SVM进行训练,并用加权投票法融合各个SVM基分类器的决策结果进行最终判决。通过对UCI数据集的仿真结果表明,本算法与支持向量机集成算法相比,能够在更少的样本以及特征的基础上,实现较高的识别正确率。
展开更多
关键词
集成学习
均值近邻
支持向量机
下载PDF
职称材料
题名
基于优化Adaboost迭代过程的SVM集成算法
1
作者
田一明
陈伟
单新颖
机构
国家
康复辅
具
研究
中心
(
北京市
老年
功能
障碍
康复辅
助
技术
重点
实验室
民政部
神经功能
信息与
康复
工程
重点
实验室
)
河北工业大学控制科学与
工程
学院
出处
《无线互联科技》
2017年第15期106-108,共3页
文摘
为提高Adaboost算法迭代过程中生成基分类器的分类精度以及简化整个集成学习系统的复杂度,文章提出了一种优化Adaboost迭代过程的SVM集成算法。该算法提出了一种在其迭代过程中加入样本选择和特征选择的集成方法。通过均值近邻算法对样本进行选择,并利用相对熵法进行特征选择,最后利用优化得到的特征样本子集对基分类器SVM进行训练,并用加权投票法融合各个SVM基分类器的决策结果进行最终判决。通过对UCI数据集的仿真结果表明,本算法与支持向量机集成算法相比,能够在更少的样本以及特征的基础上,实现较高的识别正确率。
关键词
集成学习
均值近邻
支持向量机
Keywords
ensemble learning
mean nearest neighbor
support vector machines
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于优化Adaboost迭代过程的SVM集成算法
田一明
陈伟
单新颖
《无线互联科技》
2017
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部