期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于优化Adaboost迭代过程的SVM集成算法
1
作者 田一明 陈伟 单新颖 《无线互联科技》 2017年第15期106-108,共3页
为提高Adaboost算法迭代过程中生成基分类器的分类精度以及简化整个集成学习系统的复杂度,文章提出了一种优化Adaboost迭代过程的SVM集成算法。该算法提出了一种在其迭代过程中加入样本选择和特征选择的集成方法。通过均值近邻算法对样... 为提高Adaboost算法迭代过程中生成基分类器的分类精度以及简化整个集成学习系统的复杂度,文章提出了一种优化Adaboost迭代过程的SVM集成算法。该算法提出了一种在其迭代过程中加入样本选择和特征选择的集成方法。通过均值近邻算法对样本进行选择,并利用相对熵法进行特征选择,最后利用优化得到的特征样本子集对基分类器SVM进行训练,并用加权投票法融合各个SVM基分类器的决策结果进行最终判决。通过对UCI数据集的仿真结果表明,本算法与支持向量机集成算法相比,能够在更少的样本以及特征的基础上,实现较高的识别正确率。 展开更多
关键词 集成学习 均值近邻 支持向量机
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部