We report on the performance improvement of long-wave infrared quantum cascade lasers(LWIR QCLs)by studying and optimizing the anti-reflection(AR)optical facet coating.Compared to the Al2O3 AR coat⁃ing,the Y_(2)O_(3)A...We report on the performance improvement of long-wave infrared quantum cascade lasers(LWIR QCLs)by studying and optimizing the anti-reflection(AR)optical facet coating.Compared to the Al2O3 AR coat⁃ing,the Y_(2)O_(3)AR coating exhibits higher catastrophic optical mirror damage(COMD)level,and the optical facet coatings of both material systems have no beam steering effect.A 3-mm-long,9.5-μm-wide buried-heterostruc⁃ture(BH)LWIR QCL ofλ~8.5μm with Y_(2)O_(3)metallic high-reflection(HR)and AR of~0.2%reflectivity coating demonstrates a maximum pulsed peak power of 2.19 W at 298 K,which is 149%higher than that of the uncoated device.For continuous-wave(CW)operation,by optimizing the reflectivity of the Y_(2)O_(3)AR coating,the maximum output power reaches 0.73 W,which is 91%higher than that of the uncoated device.展开更多
The effects of key geometrical parameters on the performance of integrated spiral inductors are investigated with the 3D electromagnetic simulator HFSS.While varying geometrical parameters such as the number of turns(...The effects of key geometrical parameters on the performance of integrated spiral inductors are investigated with the 3D electromagnetic simulator HFSS.While varying geometrical parameters such as the number of turns(N),the width of the metal traces(W),the spacing between the traces(S),and the inner diameter(ID),changes in the performance of the inductors are analyzed in detail.The reasons for these changes in performance are presented.Simulation results indicate that the performance of an integrated spiral inductor can be improved by optimizing its layout.Some design rules are summarized.展开更多
The effect of channel length and width on the large and small-signal parameters of the graphene field effect transistor have been explored using an analytical approach.In the case of faster saturation as well as extre...The effect of channel length and width on the large and small-signal parameters of the graphene field effect transistor have been explored using an analytical approach.In the case of faster saturation as well as extremely high transit frequency,the graphene field effect transistor shows outstanding performance.From the transfer curve,it is observed that there is a positive shift of Dirac point from the voltage of 0.15 V to 0.35 V because of reducing channel length from 440 nm to 20 nm and this curve depicts that graphene shows ambipolar behavior.Besides,it is found that because of widening channel the drain current increases and the maximum current is found approximately 2.4 mA and 6 mA for channel width 2μm and 5μm respectively.Furthermore,an approximate symmetrical capacitance-voltage(C-V)characteristic of the graphene field effect transistor is obtained and the capacitance reduces when the channel length decreases but the capacitance can be increased by raising the channel width.In addition,a high transconductance,that demands high-speed radio frequency(RF)applications,of 6.4 mS at channel length 20 nm and 4.45 mS at channel width 5μm along with a high transit frequency of 3.95 THz have been found that demands high-speed radio frequency applications.展开更多
基金Supported by the National Natural Science Foundation of China(12393830)。
文摘We report on the performance improvement of long-wave infrared quantum cascade lasers(LWIR QCLs)by studying and optimizing the anti-reflection(AR)optical facet coating.Compared to the Al2O3 AR coat⁃ing,the Y_(2)O_(3)AR coating exhibits higher catastrophic optical mirror damage(COMD)level,and the optical facet coatings of both material systems have no beam steering effect.A 3-mm-long,9.5-μm-wide buried-heterostruc⁃ture(BH)LWIR QCL ofλ~8.5μm with Y_(2)O_(3)metallic high-reflection(HR)and AR of~0.2%reflectivity coating demonstrates a maximum pulsed peak power of 2.19 W at 298 K,which is 149%higher than that of the uncoated device.For continuous-wave(CW)operation,by optimizing the reflectivity of the Y_(2)O_(3)AR coating,the maximum output power reaches 0.73 W,which is 91%higher than that of the uncoated device.
文摘The effects of key geometrical parameters on the performance of integrated spiral inductors are investigated with the 3D electromagnetic simulator HFSS.While varying geometrical parameters such as the number of turns(N),the width of the metal traces(W),the spacing between the traces(S),and the inner diameter(ID),changes in the performance of the inductors are analyzed in detail.The reasons for these changes in performance are presented.Simulation results indicate that the performance of an integrated spiral inductor can be improved by optimizing its layout.Some design rules are summarized.
基金supported by the National Key Research and Development Program of China(No.2018YFE0204000)the National Natural Science Foundation of China(No.61674141,No.51972300,No.61504134 and No.21975245)+2 种基金The Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB43000000)The World Academy of Sciences(TWAS),and the Key Research Program of Frontier Science,Chinese Academy of Sciences(No.QYZDBSSW-SLH006)support from Youth Innovation Promotion Association,Chinese Academy of Sciences(No.2020114).
文摘The effect of channel length and width on the large and small-signal parameters of the graphene field effect transistor have been explored using an analytical approach.In the case of faster saturation as well as extremely high transit frequency,the graphene field effect transistor shows outstanding performance.From the transfer curve,it is observed that there is a positive shift of Dirac point from the voltage of 0.15 V to 0.35 V because of reducing channel length from 440 nm to 20 nm and this curve depicts that graphene shows ambipolar behavior.Besides,it is found that because of widening channel the drain current increases and the maximum current is found approximately 2.4 mA and 6 mA for channel width 2μm and 5μm respectively.Furthermore,an approximate symmetrical capacitance-voltage(C-V)characteristic of the graphene field effect transistor is obtained and the capacitance reduces when the channel length decreases but the capacitance can be increased by raising the channel width.In addition,a high transconductance,that demands high-speed radio frequency(RF)applications,of 6.4 mS at channel length 20 nm and 4.45 mS at channel width 5μm along with a high transit frequency of 3.95 THz have been found that demands high-speed radio frequency applications.