期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于最小二乘支持向量机和小波神经网络的电力线通信信道噪声建模研究
被引量:
26
1
作者
张慧
卢文冰
+2 位作者
赵雄文
李梁
刘军雨
《电工技术学报》
EI
CSCD
北大核心
2018年第16期3879-3888,共10页
电力线通信是智能电网中的一种重要通信方式,电网中噪声干扰复杂,建立电力线通信信道噪声模型对于深入研究智能电网中低压电力线通信性能至关重要。针对低压电力线通信信道噪声特性,分别提出基于最小二乘支持向量机(LS-SVM)模型和小波...
电力线通信是智能电网中的一种重要通信方式,电网中噪声干扰复杂,建立电力线通信信道噪声模型对于深入研究智能电网中低压电力线通信性能至关重要。针对低压电力线通信信道噪声特性,分别提出基于最小二乘支持向量机(LS-SVM)模型和小波神经网络模型在电力线信道噪声中的应用。为了验证并比较LS-SVM和小波神经网络模型对时变的低压电力线信道噪声建模的有效性,在室内和室外环境下对低压电力线通信信道的噪声进行测量,基于大量的测量数据,研究两个模型的准确度和效率。结果表明,两个噪声模型能够很好地仿真和适应时变的低压电力线通信信道,LS-SVM模型有更高的精度和更短的仿真时间。此外,提出的两个模型与传统的Markovian-Gaussian模型进行比较,结果表明,两个噪声模型有更高的精度和更低的复杂度,尤其是LS-SVM模型能够代替传统的Markovian-Gaussian模型,更适合用作低压电力线通信信道噪声发生器。该噪声模型的提出对研究在电力线通信系统和无线通信系统中内部和外部电磁源的电磁干扰有重要意义。
展开更多
关键词
最小二乘支持向量机
小波神经网络
低压电力线通信
噪声
下载PDF
职称材料
题名
基于最小二乘支持向量机和小波神经网络的电力线通信信道噪声建模研究
被引量:
26
1
作者
张慧
卢文冰
赵雄文
李梁
刘军雨
机构
华北电力大学电气与电子工程学院
国网信通产业集团国电通公司
出处
《电工技术学报》
EI
CSCD
北大核心
2018年第16期3879-3888,共10页
基金
国家电网公司科学技术项目"基于多形态无线自组织技术的配用电通信系统研究及应用"资助(SGSDJY00GPJS1600298)
文摘
电力线通信是智能电网中的一种重要通信方式,电网中噪声干扰复杂,建立电力线通信信道噪声模型对于深入研究智能电网中低压电力线通信性能至关重要。针对低压电力线通信信道噪声特性,分别提出基于最小二乘支持向量机(LS-SVM)模型和小波神经网络模型在电力线信道噪声中的应用。为了验证并比较LS-SVM和小波神经网络模型对时变的低压电力线信道噪声建模的有效性,在室内和室外环境下对低压电力线通信信道的噪声进行测量,基于大量的测量数据,研究两个模型的准确度和效率。结果表明,两个噪声模型能够很好地仿真和适应时变的低压电力线通信信道,LS-SVM模型有更高的精度和更短的仿真时间。此外,提出的两个模型与传统的Markovian-Gaussian模型进行比较,结果表明,两个噪声模型有更高的精度和更低的复杂度,尤其是LS-SVM模型能够代替传统的Markovian-Gaussian模型,更适合用作低压电力线通信信道噪声发生器。该噪声模型的提出对研究在电力线通信系统和无线通信系统中内部和外部电磁源的电磁干扰有重要意义。
关键词
最小二乘支持向量机
小波神经网络
低压电力线通信
噪声
Keywords
Least square support vector machine(LS-SVM)
wavelet neural network
low-voltage power line communication(PLC)
noise
分类号
TN913.6 [电子电信—通信与信息系统]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于最小二乘支持向量机和小波神经网络的电力线通信信道噪声建模研究
张慧
卢文冰
赵雄文
李梁
刘军雨
《电工技术学报》
EI
CSCD
北大核心
2018
26
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部