期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多特征融合的中文评论情感分类算法
被引量:
6
1
作者
陈昀
毕海岩
《河北大学学报(自然科学版)》
CAS
北大核心
2015年第6期651-656,共6页
为解决情感分类中词间的语义关系难以表达和分析的问题,提出了一种基于词向量(word representation)和支持向量机(support vector machine)的情感分类算法,对电子商务在线评论的情感分类问题进行研究.首先使用word2vec聚类相似特征,然...
为解决情感分类中词间的语义关系难以表达和分析的问题,提出了一种基于词向量(word representation)和支持向量机(support vector machine)的情感分类算法,对电子商务在线评论的情感分类问题进行研究.首先使用word2vec聚类相似特征,然后使用word2vec和SVM对情感数据进行训练和分类,并分别使用基于词特征和基于词性标注的方法进行特征选择.在京东评论数据上进行的实验结果表明,与现有方法相比,分类准确率和召回率得到了提高.
展开更多
关键词
情感分类
词向量
支持向量机
机器学习
下载PDF
职称材料
题名
基于多特征融合的中文评论情感分类算法
被引量:
6
1
作者
陈昀
毕海岩
机构
国网天津市电力公司城东供电公司
出处
《河北大学学报(自然科学版)》
CAS
北大核心
2015年第6期651-656,共6页
基金
国家自然科学基金资助项目(61375075)
河北省自然科学基金资助项目(F2013201064)
文摘
为解决情感分类中词间的语义关系难以表达和分析的问题,提出了一种基于词向量(word representation)和支持向量机(support vector machine)的情感分类算法,对电子商务在线评论的情感分类问题进行研究.首先使用word2vec聚类相似特征,然后使用word2vec和SVM对情感数据进行训练和分类,并分别使用基于词特征和基于词性标注的方法进行特征选择.在京东评论数据上进行的实验结果表明,与现有方法相比,分类准确率和召回率得到了提高.
关键词
情感分类
词向量
支持向量机
机器学习
Keywords
sentiment classification
word2vec
SVM
machine learning
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多特征融合的中文评论情感分类算法
陈昀
毕海岩
《河北大学学报(自然科学版)》
CAS
北大核心
2015
6
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部