配电网作为电力系统的关键环节,有必要识别配电网潜在危害,避免失稳。为了解决数据中噪声干扰的问题并提高态势预测准确性,提出了一种基于深度学习的配电网安全态势感知方法。首先,采集配电网运行量,利用奇异值分解(singular value deco...配电网作为电力系统的关键环节,有必要识别配电网潜在危害,避免失稳。为了解决数据中噪声干扰的问题并提高态势预测准确性,提出了一种基于深度学习的配电网安全态势感知方法。首先,采集配电网运行量,利用奇异值分解(singular value decomposition,SVD)对运行量进行降噪;其次,分析运行量与安全态势的关系,采用评估值指标评估配电网态势;最后,利用注意力时域卷积网络(temporal convolution network-attention mechanism,TCNAM)对降噪后的输入数据预测得出态势评估值,预测配电网潜在危害,若失稳,则发出预警信号。通过对IEEE 33节点系统和实际配电网系统仿真可知,TCN-AM预测效果好,且进行降噪处理后预测准确性有所提高,能够在满足预警条件后,发出相应的预警信号。所提方法在降噪处理后能够更准确地实现配电网的安全态势感知。展开更多