期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于CEEMDAN-SE-VMD和CNN-BIGRU的短期负荷预测
1
作者 张超 张菁 李洋帆 《电子器件》 CAS 2024年第3期849-857,共9页
针对电力负荷预测的精度较低问题,提出一种基于CEEMDAN-SE-VMD和CNN-BIGRU组合模型的负荷预测方法。首先该模型采用自适应噪声的完全经验模态分解(CEEMDAN)处理成分复杂的原始负荷数据,经过分解后得到若干个包含不同频率成分的本征模函... 针对电力负荷预测的精度较低问题,提出一种基于CEEMDAN-SE-VMD和CNN-BIGRU组合模型的负荷预测方法。首先该模型采用自适应噪声的完全经验模态分解(CEEMDAN)处理成分复杂的原始负荷数据,经过分解后得到若干个包含不同频率成分的本征模函数(IMF)。再利用样本熵(SE)对分解后不同频率的本征模函数进行熵值聚类重组。然后,利用变分模态分解(VMD)对重组后的高频序列进行二次分解,将二次分解后得到的子序列和样本熵重组的低频序列和趋势序列数据输入卷积神经网络(CNN)网络,利用其来提取反映负荷序列复杂相关的高位特征向量。最后,再输入到双向门控循环单元(BIGRU)网络中进行预测,得到各子序列的预测结果,叠加得到最终的负荷序列预测结果。通过横向和纵向实验结果对比,证明所提出的模型能够较好地提升电力负荷预测精度。 展开更多
关键词 CEEMDAN 二次分解 样本熵 卷积神经网络 双向门控循环单元
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部