期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于AUC及Q统计值的集成学习训练方法 被引量:12
1
作者 章宁 陈钦 《计算机应用》 CSCD 北大核心 2019年第4期935-939,共5页
针对借贷过程中的信息不对称问题,为更有效地整合不同的数据源和贷款违约预测模型,提出一种集成学习的训练方法,使用AUC(Area Under Curve)值和Q统计值对学习器的准确性和多样性进行度量,并实现了基于AUC和Q统计值的集成学习训练算法(TA... 针对借贷过程中的信息不对称问题,为更有效地整合不同的数据源和贷款违约预测模型,提出一种集成学习的训练方法,使用AUC(Area Under Curve)值和Q统计值对学习器的准确性和多样性进行度量,并实现了基于AUC和Q统计值的集成学习训练算法(TABAQ)。基于个人对个(P2P)贷款数据进行实证分析,发现集成学习的效果与基学习器的准确性和多样性关系密切,而与所集成的基学习器数量相关性较低,并且各种集成学习方法中统计集成表现最好。实验还发现,通过融合借款人端和投资人端的信息,可以有效地降低贷款违约预测中的信息不对称性。TABAQ能有效发挥数据源融合和学习器集成两方面的优势,在保持预测准确性稳步提升的同时,预测的一类错误数量更是进一步下降了4.85%。 展开更多
关键词 集成学习 曲线下面积 Q统计值 贷款违约预测 信息不对称性 个人对个人借贷
下载PDF
基于TF-IDF算法的P2P贷款违约预测模型 被引量:9
2
作者 章宁 陈钦 《计算机应用》 CSCD 北大核心 2018年第10期3042-3047,共6页
针对目前P2P贷款违约预测模型受限于借贷双方信息不对称性,未考虑投资人之间差异性的问题,提出了基于信息检索词频-逆文本频率(TF-IDF)算法的P2P贷款违约预测模型。首先以投资效用理论为基础,利用投资人历史投资收益率、贷款利率出价等... 针对目前P2P贷款违约预测模型受限于借贷双方信息不对称性,未考虑投资人之间差异性的问题,提出了基于信息检索词频-逆文本频率(TF-IDF)算法的P2P贷款违约预测模型。首先以投资效用理论为基础,利用投资人历史投资收益率、贷款利率出价等信息,建立基于投资人效用的贷款违约预测模型;然后,借鉴信息检索TF-IDF算法,构造投资人逆向投资比例因子,对投资人差异性进行量化度量,优化模型中投资人权重计算因子。实验结果表明,该模型预测准确度与其他模型相比平均提高了6%左右,并在不同的测试数据集上都保持最优。 展开更多
关键词 贷款违约预测 效用理论 信息检索 词频逆文本频率 个人对个人借贷 曲线下面积
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部