土壤水分的影响是当前采用光谱分析法预测土壤养分含量的关键问题,该文旨在探索去除土壤水分影响、提高有机质高光谱定量估测精度的方法。首先采用地物光谱仪进行湿土和过筛干土的高光谱测试,并进行一阶导数变换;然后,采用奇异值分...土壤水分的影响是当前采用光谱分析法预测土壤养分含量的关键问题,该文旨在探索去除土壤水分影响、提高有机质高光谱定量估测精度的方法。首先采用地物光谱仪进行湿土和过筛干土的高光谱测试,并进行一阶导数变换;然后,采用奇异值分解(singular value decomposition,SVD)结合相关分析筛选土壤水分特征光谱,构建去除水分因素的修正系数,形成湿土光谱的校正光谱;最后基于校正前后湿土光谱,应用偏最小二乘(partial least squares,PLS)回归构建土壤有机质含量的估测模型,并对模型进行验证和比较,分析评价校正前后光谱的预测精度。结果显示:按土壤水分含量梯度划分的2组和全部棕壤及褐土土样共4组样本校正后建模决定系数和均方根误差分别为0.85、0.82、0.74、0.76和0.19%、0.20%、0.23%、0.19%,决定系数提高了0.02~0.09,均方根误差降低了0.01~0.03百分点,验证决定系数、均方根误差和相对分析误差分别为0.78、0.77、0.72、0.76,0.21%、0.15%、0.21%、0.15%和2.03、2.02、1.86、1.98,决定系数提高了0.06~0.15,均方根误差除褐土土样提高0.02百分点外,其他样本组降低了0.01~0.08百分点,相对分析误差提高了0.17~0.43,模型决定系数和相对分析误差得到显著提升;尤其对于土壤水分含量变异系数较小的3组土样,模型从待改进级别提高到性能良好级别,对土壤有机质含量具有较好的预测准确性。说明该方法用于去除土壤水分因素影响和提高有机质含量高光谱估测精度的有效性。展开更多
【目的】为提高土壤盐分信息定量遥感提取精度,准确掌握土壤盐渍化程度与分布。【方法】选择垦利区黄河口镇集中连片的重度盐渍土区域为试验区,于2018年4月26日—28日采用搭载Sequoia多光谱相机的无人机进行试验区近地遥感图像采集,并...【目的】为提高土壤盐分信息定量遥感提取精度,准确掌握土壤盐渍化程度与分布。【方法】选择垦利区黄河口镇集中连片的重度盐渍土区域为试验区,于2018年4月26日—28日采用搭载Sequoia多光谱相机的无人机进行试验区近地遥感图像采集,并进行图像拼接、辐射校正、正射校正和几何校正等预处理;然后基于相关性分析、灰色关联度分析筛选土壤盐分的敏感波段,构建并筛选光谱参量;进而分别采用多元线性回归(multivariable linear regression,MLR)、支持向量机(support vector machine,SVM)及偏最小二乘(partial least square,PLS)方法构建土壤盐分定量反演模型,并进行验证与评价;最后基于最佳模型进行试验区土壤盐分的分布反演与分析,并与反距离加权插值结果进行精度比较。【结果】相较相关性分析,通过灰色关联度分析的反演模型精度及显著性均有所提高;对比3种建模方法,SVM模型精度最高,PLS模型次之,MLR模型最低,最佳模型为基于灰色关联度分析筛选变量的支持向量机模型,其建模R^2、RMSE分别为0.820、3.626,验证R^2、RMSE、RPD分别为0.773、4.960、2.200;据此模型反演得到该区域土壤盐分含量为0.323—21.210 g·kg^(-1),平均值为6.871 g·kg^(-1),重度盐渍土占58.094%,与实地调查结果较为一致;反演结果与反距离加权插值结果的误差80%控制在样本盐分含量平均值的20%以内,亦较为相近。【结论】基于无人机多光谱可实现重度盐渍土盐分信息的准确提取。展开更多
文摘土壤水分的影响是当前采用光谱分析法预测土壤养分含量的关键问题,该文旨在探索去除土壤水分影响、提高有机质高光谱定量估测精度的方法。首先采用地物光谱仪进行湿土和过筛干土的高光谱测试,并进行一阶导数变换;然后,采用奇异值分解(singular value decomposition,SVD)结合相关分析筛选土壤水分特征光谱,构建去除水分因素的修正系数,形成湿土光谱的校正光谱;最后基于校正前后湿土光谱,应用偏最小二乘(partial least squares,PLS)回归构建土壤有机质含量的估测模型,并对模型进行验证和比较,分析评价校正前后光谱的预测精度。结果显示:按土壤水分含量梯度划分的2组和全部棕壤及褐土土样共4组样本校正后建模决定系数和均方根误差分别为0.85、0.82、0.74、0.76和0.19%、0.20%、0.23%、0.19%,决定系数提高了0.02~0.09,均方根误差降低了0.01~0.03百分点,验证决定系数、均方根误差和相对分析误差分别为0.78、0.77、0.72、0.76,0.21%、0.15%、0.21%、0.15%和2.03、2.02、1.86、1.98,决定系数提高了0.06~0.15,均方根误差除褐土土样提高0.02百分点外,其他样本组降低了0.01~0.08百分点,相对分析误差提高了0.17~0.43,模型决定系数和相对分析误差得到显著提升;尤其对于土壤水分含量变异系数较小的3组土样,模型从待改进级别提高到性能良好级别,对土壤有机质含量具有较好的预测准确性。说明该方法用于去除土壤水分因素影响和提高有机质含量高光谱估测精度的有效性。
文摘【目的】为提高土壤盐分信息定量遥感提取精度,准确掌握土壤盐渍化程度与分布。【方法】选择垦利区黄河口镇集中连片的重度盐渍土区域为试验区,于2018年4月26日—28日采用搭载Sequoia多光谱相机的无人机进行试验区近地遥感图像采集,并进行图像拼接、辐射校正、正射校正和几何校正等预处理;然后基于相关性分析、灰色关联度分析筛选土壤盐分的敏感波段,构建并筛选光谱参量;进而分别采用多元线性回归(multivariable linear regression,MLR)、支持向量机(support vector machine,SVM)及偏最小二乘(partial least square,PLS)方法构建土壤盐分定量反演模型,并进行验证与评价;最后基于最佳模型进行试验区土壤盐分的分布反演与分析,并与反距离加权插值结果进行精度比较。【结果】相较相关性分析,通过灰色关联度分析的反演模型精度及显著性均有所提高;对比3种建模方法,SVM模型精度最高,PLS模型次之,MLR模型最低,最佳模型为基于灰色关联度分析筛选变量的支持向量机模型,其建模R^2、RMSE分别为0.820、3.626,验证R^2、RMSE、RPD分别为0.773、4.960、2.200;据此模型反演得到该区域土壤盐分含量为0.323—21.210 g·kg^(-1),平均值为6.871 g·kg^(-1),重度盐渍土占58.094%,与实地调查结果较为一致;反演结果与反距离加权插值结果的误差80%控制在样本盐分含量平均值的20%以内,亦较为相近。【结论】基于无人机多光谱可实现重度盐渍土盐分信息的准确提取。