访谈按语:芮效卫(David Tod Roy,1933-2016)是美国芝加哥大学东亚语言与文明系荣休教授,一生致力于元、明、清文学作品及相关领域研究,是享誉世界的汉学家和翻译家。芮效卫1933年出生在中国南京,先后在南京、成都、上海等地生活学习,自...访谈按语:芮效卫(David Tod Roy,1933-2016)是美国芝加哥大学东亚语言与文明系荣休教授,一生致力于元、明、清文学作品及相关领域研究,是享誉世界的汉学家和翻译家。芮效卫1933年出生在中国南京,先后在南京、成都、上海等地生活学习,自幼对中国古典文学情有独钟。1950年,芮效卫返美入哈佛大学历史系,师从费正清、海陶玮、史华慈、杨联陞、柯立夫和大卫·霍克斯等诸位学者。20世纪60年代起,芮效卫先后在普林斯顿大学、芝加哥大学讲授《三国演义》《水浒传》《金瓶梅》《红楼梦》等明清小说,培养了包括浦安迪、柯丽德、欧大年在内的一大批优秀汉学家。此外,芮效卫耗时30年完成的英译《金瓶梅词话》因忠实、全面再现原著内容,完美诠释“传神———达意”翻译风格,被西方学界誉为“迄今为止最好的英译本”,为中国古典文学作品的海外传播做出巨大贡献。展开更多
The concurrent subspace design (CSD) framework has been used to conduct a preliminary design optimization of an electric powered, unmanned air vehicle (EPUAV) operating at a low Reynolds number. A multidisciplinary sy...The concurrent subspace design (CSD) framework has been used to conduct a preliminary design optimization of an electric powered, unmanned air vehicle (EPUAV) operating at a low Reynolds number. A multidisciplinary system analysis that includes aerodynamics, weights, propulsion, performance and stability and control has been developed for this class of vehicles. The CSD framework employs artificial neural network based response surfaces to provide approximations to the design space. The EPUAV system includes 25 continuous and 4 discrete design variables. The CSD framework was able to identify feasible designs with significant weight reductions relative to any previously considered (i.e. initial database) designs. This was accomplished with a limited number of system analyses. The results also demonstrate the nature of this design framework adaptive to changes in design requirements.展开更多
文摘访谈按语:芮效卫(David Tod Roy,1933-2016)是美国芝加哥大学东亚语言与文明系荣休教授,一生致力于元、明、清文学作品及相关领域研究,是享誉世界的汉学家和翻译家。芮效卫1933年出生在中国南京,先后在南京、成都、上海等地生活学习,自幼对中国古典文学情有独钟。1950年,芮效卫返美入哈佛大学历史系,师从费正清、海陶玮、史华慈、杨联陞、柯立夫和大卫·霍克斯等诸位学者。20世纪60年代起,芮效卫先后在普林斯顿大学、芝加哥大学讲授《三国演义》《水浒传》《金瓶梅》《红楼梦》等明清小说,培养了包括浦安迪、柯丽德、欧大年在内的一大批优秀汉学家。此外,芮效卫耗时30年完成的英译《金瓶梅词话》因忠实、全面再现原著内容,完美诠释“传神———达意”翻译风格,被西方学界誉为“迄今为止最好的英译本”,为中国古典文学作品的海外传播做出巨大贡献。
文摘The concurrent subspace design (CSD) framework has been used to conduct a preliminary design optimization of an electric powered, unmanned air vehicle (EPUAV) operating at a low Reynolds number. A multidisciplinary system analysis that includes aerodynamics, weights, propulsion, performance and stability and control has been developed for this class of vehicles. The CSD framework employs artificial neural network based response surfaces to provide approximations to the design space. The EPUAV system includes 25 continuous and 4 discrete design variables. The CSD framework was able to identify feasible designs with significant weight reductions relative to any previously considered (i.e. initial database) designs. This was accomplished with a limited number of system analyses. The results also demonstrate the nature of this design framework adaptive to changes in design requirements.