期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于吉伯斯样本生成器的向量自回归模型选择 被引量:5
1
作者 赵昕东 钱国骐 《统计研究》 CSSCI 北大核心 2008年第1期86-92,共7页
向量自回归模型是多元时间序列分析中最常用的方法之一。在建立模型的过程中模型选择是非常重要的一个环节,如果候选模型不是很多时,可以通过比较每个模型的准则值如AIC、AICc、BIC或HQ进行模型选择。可是,当存在大量候选模型时,无法一... 向量自回归模型是多元时间序列分析中最常用的方法之一。在建立模型的过程中模型选择是非常重要的一个环节,如果候选模型不是很多时,可以通过比较每个模型的准则值如AIC、AICc、BIC或HQ进行模型选择。可是,当存在大量候选模型时,无法一一比较每个模型的准则值。为了解决这个问题,本文提出一个基于吉伯斯样本生成器的向量自回归模型选择方法,结果表明应用该方法能够从大量候选模型中准确、高效地确认准则值最小的模型。 展开更多
关键词 VAR模型选择 吉伯斯样本生成器 准则值 马尔可夫链-蒙特卡洛方法
下载PDF
基于Kullback-Leibler信息量的最优ARMA模型组选择与组合预测研究 被引量:5
2
作者 赵昕东 钱国骐 《中国管理科学》 CSSCI 北大核心 2011年第5期21-28,共8页
ARMA模型在管理科学领域有着广泛的应用,组合预测可以提高ARMA模型的预测效果,但是如何选择最优模型组是十分重要但尚未解决的问题。本文提出了一个基于Kullback-Leibler信息量(简称K-L信息量)的最优模型组选择方法确定那些与最优模型... ARMA模型在管理科学领域有着广泛的应用,组合预测可以提高ARMA模型的预测效果,但是如何选择最优模型组是十分重要但尚未解决的问题。本文提出了一个基于Kullback-Leibler信息量(简称K-L信息量)的最优模型组选择方法确定那些与最优模型无显著差异的模型形成最优模型组。最后,本文通过模拟数据比较了基于最优模型组的组合预测与根据AIC准则确定的单个最优模型的预测效果,组合预测效果要优于单模型预测。 展开更多
关键词 Kullback-Leibler信息量 最优模型组 组合预测
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部