目的采用随机生存森林算法分析影响肝动脉化疗栓塞(transcatheter arterial chemoembolization,TACE)治疗不可切除肝细胞癌(hepatocellular carcinoma,HCC)患者的预后因素,并构建预后模型。方法回顾性选择2014年1月至2017年12月复旦大...目的采用随机生存森林算法分析影响肝动脉化疗栓塞(transcatheter arterial chemoembolization,TACE)治疗不可切除肝细胞癌(hepatocellular carcinoma,HCC)患者的预后因素,并构建预后模型。方法回顾性选择2014年1月至2017年12月复旦大学附属中山医院肝肿瘤内科收治的一线治疗为TACE的HCC患者636例,并按照7∶3比例划分为训练集(n=445)和验证集(n=191)。根据患者的临床数据、实验室指标及随访生存数据,建立Cox比例风险模型和基于机器学习算法的随机生存森林模型,并评估2种模型的预测能力。结果肿瘤负荷、年龄、基线G-谷氨酰转肽酶水平、基线甲胎蛋白水平和白蛋白-胆红素分级是影响TACE治疗不能切除HCC患者的独立预后因素。Cox回归模型的训练集1年、3年、5年的ROC曲线下面积(area under the curve,AUC)为0.782、0.796和0.791,验证集为0.750、0.766和0.766。随机生存森林模型训练集1年、3年和5年AUC为0.896、0.894和0.875,验证集为0.743、0.763和0.770。随机生存森林模型能将患者区分为预后好组和预后差组,两组生存期差异有统计学意义(P<0.05)。决策曲线显示随机生存森林模型的净获益优于Cox比例风险模型。结论随机生存森林模型是预测TACE治疗不可切除HCC患者预后的可靠工具。展开更多
文摘目的采用随机生存森林算法分析影响肝动脉化疗栓塞(transcatheter arterial chemoembolization,TACE)治疗不可切除肝细胞癌(hepatocellular carcinoma,HCC)患者的预后因素,并构建预后模型。方法回顾性选择2014年1月至2017年12月复旦大学附属中山医院肝肿瘤内科收治的一线治疗为TACE的HCC患者636例,并按照7∶3比例划分为训练集(n=445)和验证集(n=191)。根据患者的临床数据、实验室指标及随访生存数据,建立Cox比例风险模型和基于机器学习算法的随机生存森林模型,并评估2种模型的预测能力。结果肿瘤负荷、年龄、基线G-谷氨酰转肽酶水平、基线甲胎蛋白水平和白蛋白-胆红素分级是影响TACE治疗不能切除HCC患者的独立预后因素。Cox回归模型的训练集1年、3年、5年的ROC曲线下面积(area under the curve,AUC)为0.782、0.796和0.791,验证集为0.750、0.766和0.766。随机生存森林模型训练集1年、3年和5年AUC为0.896、0.894和0.875,验证集为0.743、0.763和0.770。随机生存森林模型能将患者区分为预后好组和预后差组,两组生存期差异有统计学意义(P<0.05)。决策曲线显示随机生存森林模型的净获益优于Cox比例风险模型。结论随机生存森林模型是预测TACE治疗不可切除HCC患者预后的可靠工具。