Researchers have been attempting to characterize heterogeneous catalysts in situ in addition to correlating their structures with their activity and selectivity in spite of many challenges.Here,we review recent experi...Researchers have been attempting to characterize heterogeneous catalysts in situ in addition to correlating their structures with their activity and selectivity in spite of many challenges.Here,we review recent experimental and theoretical advances regarding alkyne selective hydrogenation by Pd‐based catalysts,which are an important petrochemical reaction.The catalytic selectivity for the reaction of alkynes to alkenes is influenced by the composition and structure of the catalysts.Recent progress achieved through experimental studies and atomic simulations has provided useful insights into the origins of the selectivity.The important role of the subsurface species(H and C)was revealed by monitoring the catalyst surface and the related catalytic performance.The atomic structures of the Pd catalytic centers and their relationship with selectivity were established through atomic simulations.The combined knowledge gained from experimental and theoretical studies provides a fundamental understanding of catalytic mechanisms and reveals a path toward improved catalyst design.展开更多
LASP(large-scale atomistic simulation with neural network potential)software developed by our group since 2018 is a powerful platform(www.lasphub.com)for performing atomic simulation of complex materials.The software ...LASP(large-scale atomistic simulation with neural network potential)software developed by our group since 2018 is a powerful platform(www.lasphub.com)for performing atomic simulation of complex materials.The software integrates the neural network(NN)potential technique with the global potential energy surface exploration method,and thus can be utilized widely for structure prediction and reaction mechanism exploration.Here we introduce our recent update on the LASP program version 3.0,focusing on the new functionalities including the advanced neuralnetwork training based on the multi-network framework,the newly-introduced S^(7) and S^(8) power type structure descriptor(PTSD).These new functionalities are designed to further improve the accuracy of potentials and accelerate the neural network training for multipleelement systems.Taking Cu-C-H-O neural network potential and a heterogeneous catalytic model as the example,we show that these new functionalities can accelerate the training of multi-element neural network potential by using the existing single-network potential as the input.The obtained double-network potential Cu CHO is robust in simulation and the introduction of S^(7) and S^(8) PTSDs can reduce the root-mean-square errors of energy by a factor of two.展开更多
文摘Researchers have been attempting to characterize heterogeneous catalysts in situ in addition to correlating their structures with their activity and selectivity in spite of many challenges.Here,we review recent experimental and theoretical advances regarding alkyne selective hydrogenation by Pd‐based catalysts,which are an important petrochemical reaction.The catalytic selectivity for the reaction of alkynes to alkenes is influenced by the composition and structure of the catalysts.Recent progress achieved through experimental studies and atomic simulations has provided useful insights into the origins of the selectivity.The important role of the subsurface species(H and C)was revealed by monitoring the catalyst surface and the related catalytic performance.The atomic structures of the Pd catalytic centers and their relationship with selectivity were established through atomic simulations.The combined knowledge gained from experimental and theoretical studies provides a fundamental understanding of catalytic mechanisms and reveals a path toward improved catalyst design.
基金supported by the National Key Research and Development Program of China (No.2018YFA0208600)the National Natural Science Foundation of China (No.91945301, No.22033003, No.92061112, No.22122301, and No.91745201)
文摘LASP(large-scale atomistic simulation with neural network potential)software developed by our group since 2018 is a powerful platform(www.lasphub.com)for performing atomic simulation of complex materials.The software integrates the neural network(NN)potential technique with the global potential energy surface exploration method,and thus can be utilized widely for structure prediction and reaction mechanism exploration.Here we introduce our recent update on the LASP program version 3.0,focusing on the new functionalities including the advanced neuralnetwork training based on the multi-network framework,the newly-introduced S^(7) and S^(8) power type structure descriptor(PTSD).These new functionalities are designed to further improve the accuracy of potentials and accelerate the neural network training for multipleelement systems.Taking Cu-C-H-O neural network potential and a heterogeneous catalytic model as the example,we show that these new functionalities can accelerate the training of multi-element neural network potential by using the existing single-network potential as the input.The obtained double-network potential Cu CHO is robust in simulation and the introduction of S^(7) and S^(8) PTSDs can reduce the root-mean-square errors of energy by a factor of two.