随着电子设备日益微型化和集成化,热仿真已成为其设计中的关键因素。电子封装模块的热仿真通常使用传统的有限元法FEM(finite element method),存在计算效率和精度之间的矛盾,在处理大变形问题和网格畸变方面也容易造成计算不收敛,从而...随着电子设备日益微型化和集成化,热仿真已成为其设计中的关键因素。电子封装模块的热仿真通常使用传统的有限元法FEM(finite element method),存在计算效率和精度之间的矛盾,在处理大变形问题和网格畸变方面也容易造成计算不收敛,从而导致结果错误。针对该问题,提出一种基于光滑粒子动力学SPH(smoothed particle hydrodynamics)算法的电子封装模块热仿真系统。该算法基于无网格拉格朗日数值方法,通过将热仿真对象离散为1组粒子的方式求解热传导方程,从而准确地预测电子封装模块的传热与散热,无需生成并处理大量的微小网格,不用担心网格失真等问题。SPH相对于FEM,仿真精度误差保持在1%~2%,仿真效率可提升近30倍,适合用于复杂和动态系统的模拟仿真。展开更多
文摘随着电子设备日益微型化和集成化,热仿真已成为其设计中的关键因素。电子封装模块的热仿真通常使用传统的有限元法FEM(finite element method),存在计算效率和精度之间的矛盾,在处理大变形问题和网格畸变方面也容易造成计算不收敛,从而导致结果错误。针对该问题,提出一种基于光滑粒子动力学SPH(smoothed particle hydrodynamics)算法的电子封装模块热仿真系统。该算法基于无网格拉格朗日数值方法,通过将热仿真对象离散为1组粒子的方式求解热传导方程,从而准确地预测电子封装模块的传热与散热,无需生成并处理大量的微小网格,不用担心网格失真等问题。SPH相对于FEM,仿真精度误差保持在1%~2%,仿真效率可提升近30倍,适合用于复杂和动态系统的模拟仿真。