云数据库智能运维中的重要应用场景之一是对监控采集的大量性能时序数据进行趋势预测。提出一种基于Prophet模型和ARIMA模型的综合调优智能趋势预测方法AutoPA4DB(auto prophet and ARIMA for database)。该方法根据数据库性能监控数据...云数据库智能运维中的重要应用场景之一是对监控采集的大量性能时序数据进行趋势预测。提出一种基于Prophet模型和ARIMA模型的综合调优智能趋势预测方法AutoPA4DB(auto prophet and ARIMA for database)。该方法根据数据库性能监控数据的特征,进行了原始监控数据的预处理、预测模型自动调参和模型优化。采用加权的时序预测准确性度量WMC(weighted MAPE coverage),基于多个企业级数据库实例(包含10种性能指标)进行了实验验证。实验对比了5种不同时序模型的预测效果,结果表明在单调变化模式(如磁盘使用量)的数据中,文中提出的AutoPA4DB方法时序预测准确性最高;然而在震荡模式的数据中,预测效果不太稳定,例如内存使用率趋势预测效果较好,但数据库连接数趋势预测效果不理想。展开更多
在线评论在用户的购买决策中起到日益重要的作用,电商网站提供海量的用户评论,但是个体很难充分利用所有信息。因此,对这些评论进行分类、分析和汇总是很迫切的任务。首次提出一个基于注意力机制和双向LSTM(bi-directional long short-t...在线评论在用户的购买决策中起到日益重要的作用,电商网站提供海量的用户评论,但是个体很难充分利用所有信息。因此,对这些评论进行分类、分析和汇总是很迫切的任务。首次提出一个基于注意力机制和双向LSTM(bi-directional long short-term memory,BLSTM)的模型来判定评论对象的类别,用于评论的分类。模型首先使用BLSTM对词向量形式的评论进行训练;然后根据词性为BLSTM的输出向量赋予相应权重,权重作为先验知识能指导注意力机制的学习;最后使用注意力机制捕捉与类别相关的重要信息用于类别判定。在SemEval数据集上进行了实验,结果表明,模型能有效提高评论对象类别判定的效果,优于其他算法。展开更多
文摘云数据库智能运维中的重要应用场景之一是对监控采集的大量性能时序数据进行趋势预测。提出一种基于Prophet模型和ARIMA模型的综合调优智能趋势预测方法AutoPA4DB(auto prophet and ARIMA for database)。该方法根据数据库性能监控数据的特征,进行了原始监控数据的预处理、预测模型自动调参和模型优化。采用加权的时序预测准确性度量WMC(weighted MAPE coverage),基于多个企业级数据库实例(包含10种性能指标)进行了实验验证。实验对比了5种不同时序模型的预测效果,结果表明在单调变化模式(如磁盘使用量)的数据中,文中提出的AutoPA4DB方法时序预测准确性最高;然而在震荡模式的数据中,预测效果不太稳定,例如内存使用率趋势预测效果较好,但数据库连接数趋势预测效果不理想。
文摘在线评论在用户的购买决策中起到日益重要的作用,电商网站提供海量的用户评论,但是个体很难充分利用所有信息。因此,对这些评论进行分类、分析和汇总是很迫切的任务。首次提出一个基于注意力机制和双向LSTM(bi-directional long short-term memory,BLSTM)的模型来判定评论对象的类别,用于评论的分类。模型首先使用BLSTM对词向量形式的评论进行训练;然后根据词性为BLSTM的输出向量赋予相应权重,权重作为先验知识能指导注意力机制的学习;最后使用注意力机制捕捉与类别相关的重要信息用于类别判定。在SemEval数据集上进行了实验,结果表明,模型能有效提高评论对象类别判定的效果,优于其他算法。