期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于用户重购行为的产品推荐方法 被引量:1
1
作者 耿杰 刘春丽 +4 位作者 魏雪梅 程明月 袁昆 李洋 刘业政 《计算机研究与发展》 EI CSCD 北大核心 2023年第8期1795-1807,共13页
重复购买是消费者日常消费决策中的常见现象,考虑用户重购行为对于提升产品个性化推荐准确性至关重要.然而针对用户重购行为建模和预测的研究工作相对较少,还有很多问题有待解决.已有推荐技术主要通过深度挖掘产品、用户或时间某一层面... 重复购买是消费者日常消费决策中的常见现象,考虑用户重购行为对于提升产品个性化推荐准确性至关重要.然而针对用户重购行为建模和预测的研究工作相对较少,还有很多问题有待解决.已有推荐技术主要通过深度挖掘产品、用户或时间某一层面信息来进行重购产品推荐,忽略了对多层次信息融合建模方法的研究,同时也忽略了重购推荐结果的可解释性需求.因此,融合多层次用户偏好信息,构建了具有双层注意力机制的可解释用户重复消费推荐方法.该方法融合注意力机制和指针生成网络,多层次提取并学习用户重购偏好,同时基于信息处理理论构建S型用户重购动态偏好函数,融合产品流行度信息进行重购产品和新颖产品的混合推荐,提高了模型可解释性和准确性.真实数据集上的实验结果表明,所提方法在多个性能指标上都优于对比方法,且学习出的参数具备较好的可解释性.此外,通过回归分析验证了S型重购动态偏好函数的可信性,进一步增强了理论的可解释性. 展开更多
关键词 产品推荐 重复消费 可解释性 注意力机制 信息处理理论
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部