采用电化学测试技术对 Ti Ni基形状记忆合金在生理盐水中的腐蚀机理进行了研究 .结果表明 ,Ti Ni合金与 Ti Ni Cu合金相比 ,阳极钝化区拓宽、孔蚀电位正移、腐蚀率减小 .通过EDX分析和 SEM观察发现 ,Ti Ni基形状记忆合金蚀孔内存在富 Ti...采用电化学测试技术对 Ti Ni基形状记忆合金在生理盐水中的腐蚀机理进行了研究 .结果表明 ,Ti Ni合金与 Ti Ni Cu合金相比 ,阳极钝化区拓宽、孔蚀电位正移、腐蚀率减小 .通过EDX分析和 SEM观察发现 ,Ti Ni基形状记忆合金蚀孔内存在富 Ti贫 Ni的 Ti2 Ni析出相 ,是萌生孔蚀的敏感位置 .在生理盐水中 Ti Ni Cu合金的耐蚀性比 Ti Ni合金劣 ,是由于 Ti Ni Cu合金存在不同晶体结构区域 ,造成电化学性质不均匀 ,加之晶界疏松状态的 Cu的表面富集 。展开更多
Nitrogen vacancies and sulfur co-doped g-C3N4 with outstanding N2 photofixation ability was synthesized via dielectric barrier discharge plasma treatment. X-ray diffraction, ultraviolet–visible spectroscopy, N2 adsor...Nitrogen vacancies and sulfur co-doped g-C3N4 with outstanding N2 photofixation ability was synthesized via dielectric barrier discharge plasma treatment. X-ray diffraction, ultraviolet–visible spectroscopy, N2 adsorption, scanning electron microscopy, X-ray photoelectron spectroscopy, photoluminescence spectroscopy, and temperature-programmed desorption were used to characterize the as-prepared catalyst. The results showed that plasma treatment cannot change the morphology of the as-prepared catalyst but introduces nitrogen vacancies and sulfur into g-C3N4 lattice simultaneously. The as-prepared co-doped g-C3N4 displays an ammonium ion production rate as high as 6.2 mg·L^-1·h^-1·gcat^-1, which is 2.3 and 25.8 times higher than that of individual N-vacancy-doped g-C3N4 and neat g-C3N4, respectively, as well as showing good catalytic stability. Experimental and density functional theory calculation results indicate that, compared with individual N vacancy doping, the introduction of sulfur can promote the activation ability of N vacancies to N2 molecules, leading to promoted N2 photofixation performance.展开更多
Interface engineering has been widely investigated to regulate the structure and performance of electrodes and photoelectrodes,but the investigation of multiple carbon interface modifications on the electrocatalytic o...Interface engineering has been widely investigated to regulate the structure and performance of electrodes and photoelectrodes,but the investigation of multiple carbon interface modifications on the electrocatalytic oxygen evolution reaction(OER)is still shortage.Herein,we report remarkable promotion of OER performance on the NiFe‐based nanocomposite electrocatalyst via the synergy of multiple carbon‐based interface engineering.Specifically,carbon nanotubes were in situ grown on carbon fiber paper to improve the interface between CFP and NiFeO_(x)H_(y),and graphite carbon nanoparticles were in situ loaded and partly doped into the NiFeO_(x)H_(y) to modify the intergranular interface charge transfer and electronic structure of NiFeO_(x)H_(y).Consequently,the as‐obtained NiFeO_(x)H_(y)‐C/CNTs/CFP catalyst exhibited significantly enhanced electrocatalytic OER activity with an overpotential of 202 mV at 10 mA cm^(-2) in 1 mol L^(-1) KOH.Our work not only extends application of carbon materials but also provides an alternative strategy to develop highly efficient electrocatalysts.展开更多
In this study,the interaction between TPE-Ph COF and ammonia molecules,as well as the mechanism of fluorescence detection of ammonia,were comprehensively investigated using density functional theory(DFT)and time-depen...In this study,the interaction between TPE-Ph COF and ammonia molecules,as well as the mechanism of fluorescence detection of ammonia,were comprehensively investigated using density functional theory(DFT)and time-dependent density functional theory(TD-DFT).It was found that the binding between TPE-Ph COF and ammonia molecules occurs primarily through coordination bonds or hydrogen bonds.Specifically,the formation of coordination bonds significantly changes the intramolecular charge transfer of TPE-Ph COF,leading to fluorescence quenching.Computational analysis revealed the changes in electron and hole distributions upon the binding of ammonia to TPE-Ph COF,as well as the competition between nonradiative and radiative transitions during the photophysical processes,thereby elucidating the intrinsic mechanism of fluorescence response.展开更多
文摘采用电化学测试技术对 Ti Ni基形状记忆合金在生理盐水中的腐蚀机理进行了研究 .结果表明 ,Ti Ni合金与 Ti Ni Cu合金相比 ,阳极钝化区拓宽、孔蚀电位正移、腐蚀率减小 .通过EDX分析和 SEM观察发现 ,Ti Ni基形状记忆合金蚀孔内存在富 Ti贫 Ni的 Ti2 Ni析出相 ,是萌生孔蚀的敏感位置 .在生理盐水中 Ti Ni Cu合金的耐蚀性比 Ti Ni合金劣 ,是由于 Ti Ni Cu合金存在不同晶体结构区域 ,造成电化学性质不均匀 ,加之晶界疏松状态的 Cu的表面富集 。
基金supported by the National Natural Science Foundation of China(41701364)the Liaoning Doctoral Priming Fund Project(201601333,20170520109)+2 种基金the Basic Scientific Research in Colleges and Universities in Heilongjiang Province(KJCXZD201715)the Harbin Science and Technology Bureau Project(2017RAQXJ145)supported by Super Computing Center of Dalian University of Technology~~
文摘Nitrogen vacancies and sulfur co-doped g-C3N4 with outstanding N2 photofixation ability was synthesized via dielectric barrier discharge plasma treatment. X-ray diffraction, ultraviolet–visible spectroscopy, N2 adsorption, scanning electron microscopy, X-ray photoelectron spectroscopy, photoluminescence spectroscopy, and temperature-programmed desorption were used to characterize the as-prepared catalyst. The results showed that plasma treatment cannot change the morphology of the as-prepared catalyst but introduces nitrogen vacancies and sulfur into g-C3N4 lattice simultaneously. The as-prepared co-doped g-C3N4 displays an ammonium ion production rate as high as 6.2 mg·L^-1·h^-1·gcat^-1, which is 2.3 and 25.8 times higher than that of individual N-vacancy-doped g-C3N4 and neat g-C3N4, respectively, as well as showing good catalytic stability. Experimental and density functional theory calculation results indicate that, compared with individual N vacancy doping, the introduction of sulfur can promote the activation ability of N vacancies to N2 molecules, leading to promoted N2 photofixation performance.
文摘Interface engineering has been widely investigated to regulate the structure and performance of electrodes and photoelectrodes,but the investigation of multiple carbon interface modifications on the electrocatalytic oxygen evolution reaction(OER)is still shortage.Herein,we report remarkable promotion of OER performance on the NiFe‐based nanocomposite electrocatalyst via the synergy of multiple carbon‐based interface engineering.Specifically,carbon nanotubes were in situ grown on carbon fiber paper to improve the interface between CFP and NiFeO_(x)H_(y),and graphite carbon nanoparticles were in situ loaded and partly doped into the NiFeO_(x)H_(y) to modify the intergranular interface charge transfer and electronic structure of NiFeO_(x)H_(y).Consequently,the as‐obtained NiFeO_(x)H_(y)‐C/CNTs/CFP catalyst exhibited significantly enhanced electrocatalytic OER activity with an overpotential of 202 mV at 10 mA cm^(-2) in 1 mol L^(-1) KOH.Our work not only extends application of carbon materials but also provides an alternative strategy to develop highly efficient electrocatalysts.
文摘In this study,the interaction between TPE-Ph COF and ammonia molecules,as well as the mechanism of fluorescence detection of ammonia,were comprehensively investigated using density functional theory(DFT)and time-dependent density functional theory(TD-DFT).It was found that the binding between TPE-Ph COF and ammonia molecules occurs primarily through coordination bonds or hydrogen bonds.Specifically,the formation of coordination bonds significantly changes the intramolecular charge transfer of TPE-Ph COF,leading to fluorescence quenching.Computational analysis revealed the changes in electron and hole distributions upon the binding of ammonia to TPE-Ph COF,as well as the competition between nonradiative and radiative transitions during the photophysical processes,thereby elucidating the intrinsic mechanism of fluorescence response.