期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
利用上皮源性卵巢癌预后的多基因信息建立预测预后模型
被引量:
2
1
作者
朱爱国
马振敕
王健
《山东大学学报(医学版)》
CAS
北大核心
2019年第10期80-85,共6页
目的通过基因表达谱汇编(GEO)数据库和癌症基因组图谱(TCGA)数据库筛选并建立与上皮源性卵巢癌(EOC)患者预后有关联的多基因模型,并验证其预后价值。方法从GEO数据库中下载EOC有关芯片数据(GSE14407),筛选出在EOC组织和正常卵巢上皮组...
目的通过基因表达谱汇编(GEO)数据库和癌症基因组图谱(TCGA)数据库筛选并建立与上皮源性卵巢癌(EOC)患者预后有关联的多基因模型,并验证其预后价值。方法从GEO数据库中下载EOC有关芯片数据(GSE14407),筛选出在EOC组织和正常卵巢上皮组织中差异表达的基因(DEGs),采用单因素和多因素Cox回归模型筛选出与预后有关联的DEGs,建立多基因预后模型和预后指数(PI)公式。对TCGA数据库中EOC患者的mRNA数据及临床信息进行整理,通过PI公式对患者进行评分,并根据评分将患者分为低风险组和高风险组。通过Cox回归风险模型分析临床病理参数(年龄、发病位置、组织分级、肿瘤残余及FIGO分期)和预后指数参数与EOC预后的关系。根据年龄、发病位置、组织分级、肿瘤残余及FIGO分期进行分组,采用Kaplan-Meier(K-M)生存分析验证多基因模型对卵巢癌的预后价值。结果共筛选出47个在EOC组织和正常卵巢组织中的DEGs,其中有37个表达下调的DEGs和10个表达上调的DEGs。将上述DEGs进行单因素和多因素Cox回归分析,共筛选出4个DEGs,分别是PACSIN3、KCNT1、LAMP3及KIR3DX1。PI公式:(-0.169×PACSIN3的表达量+0.078×KCNT1的表达量-0.246×LAMP3的表达量-0.147×KIR3DX1的表达量)。Cox回归模型分析证实,年龄、肿瘤残余和预后模型是卵巢癌患者的独立预后因素(P<0.01)。通过K-M生存分析证实,在TCGA数据库的312例EOC患者中,预后评分低风险的患者总体生存期(OS)较高风险患者延长,差异有统计学意义(P<0.05)。在不同的年龄、临床分期、发病位置(单侧和双侧)、肿瘤残余<10 mm的EOC患者亚组中,预后评分低风险的患者OS较高风险患者延长,差异有统计学意义(P<0.05)。结论四基因预后模型是EOC患者的独立预后因素,并在总体和根据各临床病理特征分组的EOC患者亚组中得到了验证。
展开更多
关键词
卵巢癌
预后
癌症基因组图谱
Cox比例回归模型
生物信息学
原文传递
题名
利用上皮源性卵巢癌预后的多基因信息建立预测预后模型
被引量:
2
1
作者
朱爱国
马振敕
王健
机构
天津医科大学
肿瘤
医院
综合
外一
科
国家
肿瘤
临床医学
研究
中心
天津市
"
肿瘤
防治
"
重点
实验室
天津市
恶性肿瘤
临床医学
研究
中心
出处
《山东大学学报(医学版)》
CAS
北大核心
2019年第10期80-85,共6页
基金
天津医科大学科学基金(2016KYZQ05)
文摘
目的通过基因表达谱汇编(GEO)数据库和癌症基因组图谱(TCGA)数据库筛选并建立与上皮源性卵巢癌(EOC)患者预后有关联的多基因模型,并验证其预后价值。方法从GEO数据库中下载EOC有关芯片数据(GSE14407),筛选出在EOC组织和正常卵巢上皮组织中差异表达的基因(DEGs),采用单因素和多因素Cox回归模型筛选出与预后有关联的DEGs,建立多基因预后模型和预后指数(PI)公式。对TCGA数据库中EOC患者的mRNA数据及临床信息进行整理,通过PI公式对患者进行评分,并根据评分将患者分为低风险组和高风险组。通过Cox回归风险模型分析临床病理参数(年龄、发病位置、组织分级、肿瘤残余及FIGO分期)和预后指数参数与EOC预后的关系。根据年龄、发病位置、组织分级、肿瘤残余及FIGO分期进行分组,采用Kaplan-Meier(K-M)生存分析验证多基因模型对卵巢癌的预后价值。结果共筛选出47个在EOC组织和正常卵巢组织中的DEGs,其中有37个表达下调的DEGs和10个表达上调的DEGs。将上述DEGs进行单因素和多因素Cox回归分析,共筛选出4个DEGs,分别是PACSIN3、KCNT1、LAMP3及KIR3DX1。PI公式:(-0.169×PACSIN3的表达量+0.078×KCNT1的表达量-0.246×LAMP3的表达量-0.147×KIR3DX1的表达量)。Cox回归模型分析证实,年龄、肿瘤残余和预后模型是卵巢癌患者的独立预后因素(P<0.01)。通过K-M生存分析证实,在TCGA数据库的312例EOC患者中,预后评分低风险的患者总体生存期(OS)较高风险患者延长,差异有统计学意义(P<0.05)。在不同的年龄、临床分期、发病位置(单侧和双侧)、肿瘤残余<10 mm的EOC患者亚组中,预后评分低风险的患者OS较高风险患者延长,差异有统计学意义(P<0.05)。结论四基因预后模型是EOC患者的独立预后因素,并在总体和根据各临床病理特征分组的EOC患者亚组中得到了验证。
关键词
卵巢癌
预后
癌症基因组图谱
Cox比例回归模型
生物信息学
Keywords
Ovary cancer
Prognosis
The Cancer Genome Atlas
Cox proportional regression model
Biological information
分类号
R711.75 [医药卫生—妇产科学]
原文传递
题名
作者
出处
发文年
被引量
操作
1
利用上皮源性卵巢癌预后的多基因信息建立预测预后模型
朱爱国
马振敕
王健
《山东大学学报(医学版)》
CAS
北大核心
2019
2
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部