目的为了得到精确的显著对象分割结果,基于深度学习的方法大多引入注意力机制进行特征加权,以抑制噪声和冗余信息,但是对注意力机制的建模过程粗糙,并将所有特征均等处理,无法显式学习不同通道以及不同空间区域的全局重要性。为此,本文...目的为了得到精确的显著对象分割结果,基于深度学习的方法大多引入注意力机制进行特征加权,以抑制噪声和冗余信息,但是对注意力机制的建模过程粗糙,并将所有特征均等处理,无法显式学习不同通道以及不同空间区域的全局重要性。为此,本文提出一种基于深度聚类注意力机制(deep cluster attention,DCA)的显著对象检测算法DCANet(DCA network),以更好地建模特征级别的像素上下文关联。方法DCA显式地将特征图分别在通道和空间上进行区域划分,即将特征聚类分为前景敏感区和背景敏感区。然后在类内执行一般性的逐像素注意力加权,并在类间进一步执行语义级注意力加权。DCA的思想清晰易懂,参数量少,可以便捷地部署到任意显著性检测网络中。结果在6个数据集上与19种方法的对比实验验证了DCA对得到精细显著对象分割掩码的有效性。在各项评价指标上,部署DCA之后的模型效果都得到了提升。在ECSSD(extended cornplex scene saliency dataset)数据集上,DCANet的性能比第2名在F值上提升了0.9%;在DUT-OMRON(Dalian University of Technology and OMRON Corporation)数据集中,DCANet的性能比第2名在F值上提升了0.5%,平均绝对误差(mean absolute error,MAE)降低了3.2%;在HKU-IS数据集上,DCANet的性能比第2名在F值上提升了0.3%,MAE降低了2.8%;在PASCAL(pattern analysis,statistical modeling and computational learning)-S(subset)数据集上,DCANet的性能则比第2名在F值上提升了0.8%,MAE降低了4.2%。结论本文提出的深度聚类注意力机制通过细粒度的通道划分和空间区域划分,有效地增强了前景敏感类的全局显著得分。与现有的注意力机制相比,DCA思想清晰、效果明显、部署简单,同时也为一般性的注意力机制研究提供了新的可行的研究方向。展开更多
文摘目的为了得到精确的显著对象分割结果,基于深度学习的方法大多引入注意力机制进行特征加权,以抑制噪声和冗余信息,但是对注意力机制的建模过程粗糙,并将所有特征均等处理,无法显式学习不同通道以及不同空间区域的全局重要性。为此,本文提出一种基于深度聚类注意力机制(deep cluster attention,DCA)的显著对象检测算法DCANet(DCA network),以更好地建模特征级别的像素上下文关联。方法DCA显式地将特征图分别在通道和空间上进行区域划分,即将特征聚类分为前景敏感区和背景敏感区。然后在类内执行一般性的逐像素注意力加权,并在类间进一步执行语义级注意力加权。DCA的思想清晰易懂,参数量少,可以便捷地部署到任意显著性检测网络中。结果在6个数据集上与19种方法的对比实验验证了DCA对得到精细显著对象分割掩码的有效性。在各项评价指标上,部署DCA之后的模型效果都得到了提升。在ECSSD(extended cornplex scene saliency dataset)数据集上,DCANet的性能比第2名在F值上提升了0.9%;在DUT-OMRON(Dalian University of Technology and OMRON Corporation)数据集中,DCANet的性能比第2名在F值上提升了0.5%,平均绝对误差(mean absolute error,MAE)降低了3.2%;在HKU-IS数据集上,DCANet的性能比第2名在F值上提升了0.3%,MAE降低了2.8%;在PASCAL(pattern analysis,statistical modeling and computational learning)-S(subset)数据集上,DCANet的性能则比第2名在F值上提升了0.8%,MAE降低了4.2%。结论本文提出的深度聚类注意力机制通过细粒度的通道划分和空间区域划分,有效地增强了前景敏感类的全局显著得分。与现有的注意力机制相比,DCA思想清晰、效果明显、部署简单,同时也为一般性的注意力机制研究提供了新的可行的研究方向。