针对电动汽车动力电池SOH(state of health)的估算问题,提出一种可以在线运行的有效估算方法.其优势在于仅依托电池管理系统实时测量电压、电流等数据,无需离线电池寿命衰退曲线及电池的初始状态,因此更符合电动汽车对于SOH估算问题的...针对电动汽车动力电池SOH(state of health)的估算问题,提出一种可以在线运行的有效估算方法.其优势在于仅依托电池管理系统实时测量电压、电流等数据,无需离线电池寿命衰退曲线及电池的初始状态,因此更符合电动汽车对于SOH估算问题的实际需求.在电池恒流充电模式下,以Thevenin及OCV-SOC模型为基础,构建以时间和SOH为隐变量的电池模型.基于此电池模型,提出利用NLS(nonlinear least square)初始化GA搜索范围的快速求解算法进行在线参数辨识,得到电动汽车实时的SOH估计值.验证结果表明SOH估计算法具有较好的实用性及较高的估算精度.展开更多
文摘针对电动汽车动力电池SOH(state of health)的估算问题,提出一种可以在线运行的有效估算方法.其优势在于仅依托电池管理系统实时测量电压、电流等数据,无需离线电池寿命衰退曲线及电池的初始状态,因此更符合电动汽车对于SOH估算问题的实际需求.在电池恒流充电模式下,以Thevenin及OCV-SOC模型为基础,构建以时间和SOH为隐变量的电池模型.基于此电池模型,提出利用NLS(nonlinear least square)初始化GA搜索范围的快速求解算法进行在线参数辨识,得到电动汽车实时的SOH估计值.验证结果表明SOH估计算法具有较好的实用性及较高的估算精度.