水下鱼类图像因受到光线散射和吸收、水体杂质等因素影响,导致水下鱼类图像质量较低,本文通过改进自动彩色均衡(automatic color equalization,ACE)算法进行水下鱼类图像增强,有效改善图像质量,并为后续的水下图像分割打下良好的基础。...水下鱼类图像因受到光线散射和吸收、水体杂质等因素影响,导致水下鱼类图像质量较低,本文通过改进自动彩色均衡(automatic color equalization,ACE)算法进行水下鱼类图像增强,有效改善图像质量,并为后续的水下图像分割打下良好的基础。针对水下鱼类图像分割效果差、实时性低等问题,本文提出ARD-PSPNet网络模型,使用ResNet101网络模型作为特征提取网络,利用分割性能良好的PSPNet(pyramid scene parsing network)网络模型作为基础图像分割模型,通过引入深度可分离卷积来降低计算量,通过R-MCN网络结构,充分利用浅层网络特征层丰富的位置信息和完整性,改进损失函数使得分割位置更加准确,在Fish4knowledge数据集上进行实验,结果表明:新模型与原模型相比,在平均交并比(mean intersection over union,MIOU)上提高了2.8个百分点,在平均像素准确率(mean pixel accuracy,MPA)上提高了约2个百分点。展开更多
文摘水下鱼类图像因受到光线散射和吸收、水体杂质等因素影响,导致水下鱼类图像质量较低,本文通过改进自动彩色均衡(automatic color equalization,ACE)算法进行水下鱼类图像增强,有效改善图像质量,并为后续的水下图像分割打下良好的基础。针对水下鱼类图像分割效果差、实时性低等问题,本文提出ARD-PSPNet网络模型,使用ResNet101网络模型作为特征提取网络,利用分割性能良好的PSPNet(pyramid scene parsing network)网络模型作为基础图像分割模型,通过引入深度可分离卷积来降低计算量,通过R-MCN网络结构,充分利用浅层网络特征层丰富的位置信息和完整性,改进损失函数使得分割位置更加准确,在Fish4knowledge数据集上进行实验,结果表明:新模型与原模型相比,在平均交并比(mean intersection over union,MIOU)上提高了2.8个百分点,在平均像素准确率(mean pixel accuracy,MPA)上提高了约2个百分点。