Ghouila—Houri 得到强连通有向图 D 是有向 H 图的充分条件.强连通有向图 D 中,若对任一点 V.d((?))≥p,则 D 是有向 H 图。任一有向图都可以看作某个相应马尔可夫链的转移概率图。我们应用马尔可夫链理论得到:强连通有向图 D 中,如果 ...Ghouila—Houri 得到强连通有向图 D 是有向 H 图的充分条件.强连通有向图 D 中,若对任一点 V.d((?))≥p,则 D 是有向 H 图。任一有向图都可以看作某个相应马尔可夫链的转移概率图。我们应用马尔可夫链理论得到:强连通有向图 D 中,如果 min{δ^+(D),δ^-(D)}≥p/d,则 D 是有向 H图。这里 d 是马尔可夫链周期,因此 d≥2。当 d=2时,即是 Ghouil—Houri 定理条件。展开更多
文摘Ghouila—Houri 得到强连通有向图 D 是有向 H 图的充分条件.强连通有向图 D 中,若对任一点 V.d((?))≥p,则 D 是有向 H 图。任一有向图都可以看作某个相应马尔可夫链的转移概率图。我们应用马尔可夫链理论得到:强连通有向图 D 中,如果 min{δ^+(D),δ^-(D)}≥p/d,则 D 是有向 H图。这里 d 是马尔可夫链周期,因此 d≥2。当 d=2时,即是 Ghouil—Houri 定理条件。