期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Boruta算法和GA优化混合地统计模型的土壤有机质空间分布预测
1
作者
高鹏利
任大陆
+7 位作者
李朝辉
冯志强
苗洪运
乔林
王建武
杨永亮
张利明
李光辉
《物探与化探》
CAS
2024年第3期747-758,共12页
建立土壤有机质(SOM)空间预测模型不仅可以准确预测SOM含量的空间分布,而且对科学化土壤管理和完善生态系统服务具有重要意义。本文以山西省临汾市永和县土壤为研究对象,从数字高程模型(DEM)和植被遥感数据中提取出地形因子和植被指数,...
建立土壤有机质(SOM)空间预测模型不仅可以准确预测SOM含量的空间分布,而且对科学化土壤管理和完善生态系统服务具有重要意义。本文以山西省临汾市永和县土壤为研究对象,从数字高程模型(DEM)和植被遥感数据中提取出地形因子和植被指数,结合土壤本身属性为变量因子,采取Boruta算法从变量因子中筛选出与SOM相关性强的特征变量为辅助变量作为模型输入,实测SOM值作为模型输出,选择普通克里格方法(OK)、反向传播神经网络(BPNN)、遗传算法优化的BP神经网络(GA-BPNN)和GA优化BP神经网络结合地统计方法(GA-BPNN-OK)对训练集样本SOM含量进行预测,并利用验证集样本对比分析预测精度。研究结果显示:Boruta算法优选出特征变量并且对其进行了重要性排列,依次为:全氮>地形湿度指数(TWI)>高程>坡度>归一化植被指数(NDVI)>增强型植被指数(EVI);4种方法对SOM的预测结果虽然局部会有差异,但整体的空间分布基本一致,在研究区内呈现出西部和西南部地区低、东部和东南部地区高的空间分布趋势,与其他3种模型相比,GA-BPNN-OK模型预测的SOM分布图对低值区和高值区的划分更加明显、细致;预测精度指标对比得出,GA-BPNN-OK法的均方根误差(RMSE为0.059)、平均绝对误差(MAE为0.240)、平均相对误差(MRE为0.165)最小,且拟合系数(R2为0.78)最高。同时为了验证采用Boruta算法对模型精度有所提高,将全变量与特征筛选之后的变量作为GA-BPNN法的模型输入,对预测结果进行对比,结果表明采取Boruta算法后模型误差减小。因此采取Boruta算法筛选出特征变量作为辅助变量,GA-BPNN-OK法对于SOM含量空间分布的精度最高,两者结合为最优预测模型。
展开更多
关键词
土壤有机质(SOM)
BPNN
GA-BPNN
特征选择
GA-BPNN-OK
下载PDF
职称材料
题名
基于Boruta算法和GA优化混合地统计模型的土壤有机质空间分布预测
1
作者
高鹏利
任大陆
李朝辉
冯志强
苗洪运
乔林
王建武
杨永亮
张利明
李光辉
机构
太原理工大学地球科学与工程系战略性矿产资源成矿作用与评价山西省重点实验室
山西省
地质勘查局二一三地质队有限公司
中国冶金地质总局第三地质勘查院
山西省
地质调查院有限公司
山西
大学
物理电子
工程
学院
出处
《物探与化探》
CAS
2024年第3期747-758,共12页
基金
山西省地质勘查基金项目(ZJZC-231FW125、0632-1911FW1L2054-20、晋地发[2020]32号、2020-00164-G155-C54)
山西省自然科学基金(2019L0126、2019L0054)
山西省基础研究计划项目(20210302122、4012)。
文摘
建立土壤有机质(SOM)空间预测模型不仅可以准确预测SOM含量的空间分布,而且对科学化土壤管理和完善生态系统服务具有重要意义。本文以山西省临汾市永和县土壤为研究对象,从数字高程模型(DEM)和植被遥感数据中提取出地形因子和植被指数,结合土壤本身属性为变量因子,采取Boruta算法从变量因子中筛选出与SOM相关性强的特征变量为辅助变量作为模型输入,实测SOM值作为模型输出,选择普通克里格方法(OK)、反向传播神经网络(BPNN)、遗传算法优化的BP神经网络(GA-BPNN)和GA优化BP神经网络结合地统计方法(GA-BPNN-OK)对训练集样本SOM含量进行预测,并利用验证集样本对比分析预测精度。研究结果显示:Boruta算法优选出特征变量并且对其进行了重要性排列,依次为:全氮>地形湿度指数(TWI)>高程>坡度>归一化植被指数(NDVI)>增强型植被指数(EVI);4种方法对SOM的预测结果虽然局部会有差异,但整体的空间分布基本一致,在研究区内呈现出西部和西南部地区低、东部和东南部地区高的空间分布趋势,与其他3种模型相比,GA-BPNN-OK模型预测的SOM分布图对低值区和高值区的划分更加明显、细致;预测精度指标对比得出,GA-BPNN-OK法的均方根误差(RMSE为0.059)、平均绝对误差(MAE为0.240)、平均相对误差(MRE为0.165)最小,且拟合系数(R2为0.78)最高。同时为了验证采用Boruta算法对模型精度有所提高,将全变量与特征筛选之后的变量作为GA-BPNN法的模型输入,对预测结果进行对比,结果表明采取Boruta算法后模型误差减小。因此采取Boruta算法筛选出特征变量作为辅助变量,GA-BPNN-OK法对于SOM含量空间分布的精度最高,两者结合为最优预测模型。
关键词
土壤有机质(SOM)
BPNN
GA-BPNN
特征选择
GA-BPNN-OK
Keywords
soil organic matter(SOM)
BPNN
GA-BPNN
feature selection
GA-BPNN-OK
分类号
P632 [天文地球—地质矿产勘探]
X830.1 [环境科学与工程—环境工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于Boruta算法和GA优化混合地统计模型的土壤有机质空间分布预测
高鹏利
任大陆
李朝辉
冯志强
苗洪运
乔林
王建武
杨永亮
张利明
李光辉
《物探与化探》
CAS
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部