The origins of magnetism in transition-metal doped Na0.5Bi0.5TiO3 system are investigated by ab initio calculations. The calculated results indicate that a transition-metal atom sub- stitution for a Ti atom produces m...The origins of magnetism in transition-metal doped Na0.5Bi0.5TiO3 system are investigated by ab initio calculations. The calculated results indicate that a transition-metal atom sub- stitution for a Ti atom produces magnetic moments, which are due to the spin-polarization of transition-metal 3d electrons. The characteristics of exchange coupling are also calculated, which shows that in Cr-/Mn-/Fe-/Co- doped Na0.5Bi0.5TiO3 system, the antiferromagnetic coupling is favorable. The results can successfully explain the experimental phenomenon that, in Mn-/Fe- doped Nao.sBio.sTiO3 system, the ferromagnetism disappears at low tem- perature and the paramagnetic component becomes stronger with the increase of doping concentration of Mn/Fe/Co ions. Unexpectedly, we find the Na0.5Bi0.5Ti0.67V0.33iO3 sys- tem with ferromagnetic coupling is favorable and produces a magnetic moment of 2.00 P-B, which indicates that low temperature ferromagnetism materials could be made by intro- ducing V atoms in Na0.5Bi0.5TiO3. This may be a new way to produce low temperature multiferroic materials.展开更多
文摘The origins of magnetism in transition-metal doped Na0.5Bi0.5TiO3 system are investigated by ab initio calculations. The calculated results indicate that a transition-metal atom sub- stitution for a Ti atom produces magnetic moments, which are due to the spin-polarization of transition-metal 3d electrons. The characteristics of exchange coupling are also calculated, which shows that in Cr-/Mn-/Fe-/Co- doped Na0.5Bi0.5TiO3 system, the antiferromagnetic coupling is favorable. The results can successfully explain the experimental phenomenon that, in Mn-/Fe- doped Nao.sBio.sTiO3 system, the ferromagnetism disappears at low tem- perature and the paramagnetic component becomes stronger with the increase of doping concentration of Mn/Fe/Co ions. Unexpectedly, we find the Na0.5Bi0.5Ti0.67V0.33iO3 sys- tem with ferromagnetic coupling is favorable and produces a magnetic moment of 2.00 P-B, which indicates that low temperature ferromagnetism materials could be made by intro- ducing V atoms in Na0.5Bi0.5TiO3. This may be a new way to produce low temperature multiferroic materials.