期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于最优定界椭球-极限学习机算法自适应软测量建模的应用 被引量:1
1
作者 刘宁 睢璐璐 +1 位作者 闫飞 阎高伟 《科学技术与工程》 北大核心 2018年第25期188-193,共6页
针对传统滑动窗更新模型时忽略最新数据和待测样本相似性,以及即时学习未考虑相似样本和待测样本的时间间隔问题,采用基于最优定界椭球-极限学习机算法(optimal bounding ellipsoid-extreme learning machine,OBE-ELM)的自适应软测量建... 针对传统滑动窗更新模型时忽略最新数据和待测样本相似性,以及即时学习未考虑相似样本和待测样本的时间间隔问题,采用基于最优定界椭球-极限学习机算法(optimal bounding ellipsoid-extreme learning machine,OBE-ELM)的自适应软测量建模方法将即时学习和滑动窗模型相结合来解决上述问题。首先用初始窗口数据建立ELM模型。当有待测样本到来时,利用SPE和T^2统计量判断修正模型的必要性;需要修正时,采用即时学习在最新窗口中寻找与待测样本相似的样本集并通过OBE动态修正ELM模型;否则用原有ELM模型直接预测输出。该方法的有效性通过合成数据集和连续搅拌反应釜仿真数据得以验证。 展开更多
关键词 滑动窗口 极限学习机 即时学习 最优定界椭球算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部