为控制微通道内微流体流向,提出了一种声表面波关闭微通道方法。在128°旋转Y切割X传播方向的Li Nb O3压电基片上制作中心频率为27.5 MHz的叉指换能器,其激发的声表面波熔融聚二甲基硅氧烷微槽内固体石蜡,熔融后的石蜡由于毛细作用...为控制微通道内微流体流向,提出了一种声表面波关闭微通道方法。在128°旋转Y切割X传播方向的Li Nb O3压电基片上制作中心频率为27.5 MHz的叉指换能器,其激发的声表面波熔融聚二甲基硅氧烷微槽内固体石蜡,熔融后的石蜡由于毛细作用力沿微通道输运。当移去激发声表面波的电信号后,熔融石蜡固化并阻塞微通道,实现微通道关闭。以红色染料溶液为实验对象,对微通道进行关闭操作。结果表明,声表面波可以成功地实现微通道关闭操作,当电信号功率为31.7 d Bm时,微通道关断时间约为5 min。本文工作对声表面波为驱动源的微阀研究具有一定的借鉴意义。展开更多
文摘为控制微通道内微流体流向,提出了一种声表面波关闭微通道方法。在128°旋转Y切割X传播方向的Li Nb O3压电基片上制作中心频率为27.5 MHz的叉指换能器,其激发的声表面波熔融聚二甲基硅氧烷微槽内固体石蜡,熔融后的石蜡由于毛细作用力沿微通道输运。当移去激发声表面波的电信号后,熔融石蜡固化并阻塞微通道,实现微通道关闭。以红色染料溶液为实验对象,对微通道进行关闭操作。结果表明,声表面波可以成功地实现微通道关闭操作,当电信号功率为31.7 d Bm时,微通道关断时间约为5 min。本文工作对声表面波为驱动源的微阀研究具有一定的借鉴意义。