光伏阵列的P-U特性曲线在局部遮阴环境(如树木遮挡、云层变化等)下呈现多个极值点,这会导致传统的最大功率点跟踪(maximum power point tracking,MPPT)算法失效。基于此提出了一种改进量子粒子群算法的最大功率点跟踪控制方法。该算法...光伏阵列的P-U特性曲线在局部遮阴环境(如树木遮挡、云层变化等)下呈现多个极值点,这会导致传统的最大功率点跟踪(maximum power point tracking,MPPT)算法失效。基于此提出了一种改进量子粒子群算法的最大功率点跟踪控制方法。该算法采用量子δ势阱模型,同时引入锦标赛选择机制和随机加权平均最好位置操作,提高搜索效率的同时保持了种群多样性。在MATLAB中建立基本粒子群、量子粒子群、改进量子粒子群三种算法仿真研究。结果表明,对比其他两种粒子群算法,该算法能更为精准的跟踪光伏阵列最大功率点,有效地提高了光伏阵列的输出效率。展开更多
文摘光伏阵列的P-U特性曲线在局部遮阴环境(如树木遮挡、云层变化等)下呈现多个极值点,这会导致传统的最大功率点跟踪(maximum power point tracking,MPPT)算法失效。基于此提出了一种改进量子粒子群算法的最大功率点跟踪控制方法。该算法采用量子δ势阱模型,同时引入锦标赛选择机制和随机加权平均最好位置操作,提高搜索效率的同时保持了种群多样性。在MATLAB中建立基本粒子群、量子粒子群、改进量子粒子群三种算法仿真研究。结果表明,对比其他两种粒子群算法,该算法能更为精准的跟踪光伏阵列最大功率点,有效地提高了光伏阵列的输出效率。