Let DD_0(R)={A∈C^(n×#)||Rea_(ii)Rea_(jj)|≥A_iA_j,i≠j,i,j∈N}.PD_0(R)={A∈C^(n×#)||Rea_(ii)Rea_(kk)|≥A_iA_jA_k,i≠j≠k,i,j,k∈N}. In this paper,we show DD_0(R)PD_0(R),and the conditions under which the nu...Let DD_0(R)={A∈C^(n×#)||Rea_(ii)Rea_(jj)|≥A_iA_j,i≠j,i,j∈N}.PD_0(R)={A∈C^(n×#)||Rea_(ii)Rea_(kk)|≥A_iA_jA_k,i≠j≠k,i,j,k∈N}. In this paper,we show DD_0(R)PD_0(R),and the conditions under which the numbers of eigen vance of A∈PD_0(R)\DD_0(R)are equal to the numbers of a_(ii),i∈N in positive and negative real part respectively.Some couter examples are given which present the condnions can not be omitted.展开更多
文摘Let DD_0(R)={A∈C^(n×#)||Rea_(ii)Rea_(jj)|≥A_iA_j,i≠j,i,j∈N}.PD_0(R)={A∈C^(n×#)||Rea_(ii)Rea_(kk)|≥A_iA_jA_k,i≠j≠k,i,j,k∈N}. In this paper,we show DD_0(R)PD_0(R),and the conditions under which the numbers of eigen vance of A∈PD_0(R)\DD_0(R)are equal to the numbers of a_(ii),i∈N in positive and negative real part respectively.Some couter examples are given which present the condnions can not be omitted.