目的:通过监测、流行病学及预后(surveillance,epidemiology,and end result,SEER)数据库开发列线图来分析低级别胶质瘤(low-grade glioma,LGG)患者的预后因素并且预测其生存率。方法:通过SEER数据库收集LGG患者5439例,并统计其人口统...目的:通过监测、流行病学及预后(surveillance,epidemiology,and end result,SEER)数据库开发列线图来分析低级别胶质瘤(low-grade glioma,LGG)患者的预后因素并且预测其生存率。方法:通过SEER数据库收集LGG患者5439例,并统计其人口统计学信息及临床特征。随机抽取其中1001例作为模型的内部验证集,并收集2010-2017年间就诊于山西省人民医院的LGG患者67例作为外部验证集。采用单因素、多因素Cox回归及Lasso回归分析LGG患者的独立危险因素,并考虑其临床效用性。将这些独立预测因素整合在一起,绘制预测LGG患者1年和3年生存率的列线图。通过内部验证集数据及外部验证集数据绘制ROC曲线和校准曲线图来评估列线图的性能。结果:纳入训练集患者4438例,内部验证集患者1001例,外部验证集患者67例。一般情况人群分布无显著统计学差异。通过单因素、多因素Cox回归及Lasso回归分析联合生存分析结果选择独立危险因素,纳入年龄、病理学分型、手术方式、肿瘤大小、婚姻状况、放化疗及发病部位为独立预测因素(P<0.001)。由上述7种因素构建预后预测模型,结果以列线图形式呈现。内部验证集验证列线图的ROC曲线下面积为0.841和0.804;外部验证集验证列线图的ROC曲线下面积为0.703和0.742,表明该模型的区分度与准确度较高。校准曲线显示其具有较好的一致性。结论:本列线图可用于预测LGG患者1年和3年生存率,并且拥有较高的临床价值,可以为LGG的个体化治疗提供参考。展开更多
文摘目的:通过监测、流行病学及预后(surveillance,epidemiology,and end result,SEER)数据库开发列线图来分析低级别胶质瘤(low-grade glioma,LGG)患者的预后因素并且预测其生存率。方法:通过SEER数据库收集LGG患者5439例,并统计其人口统计学信息及临床特征。随机抽取其中1001例作为模型的内部验证集,并收集2010-2017年间就诊于山西省人民医院的LGG患者67例作为外部验证集。采用单因素、多因素Cox回归及Lasso回归分析LGG患者的独立危险因素,并考虑其临床效用性。将这些独立预测因素整合在一起,绘制预测LGG患者1年和3年生存率的列线图。通过内部验证集数据及外部验证集数据绘制ROC曲线和校准曲线图来评估列线图的性能。结果:纳入训练集患者4438例,内部验证集患者1001例,外部验证集患者67例。一般情况人群分布无显著统计学差异。通过单因素、多因素Cox回归及Lasso回归分析联合生存分析结果选择独立危险因素,纳入年龄、病理学分型、手术方式、肿瘤大小、婚姻状况、放化疗及发病部位为独立预测因素(P<0.001)。由上述7种因素构建预后预测模型,结果以列线图形式呈现。内部验证集验证列线图的ROC曲线下面积为0.841和0.804;外部验证集验证列线图的ROC曲线下面积为0.703和0.742,表明该模型的区分度与准确度较高。校准曲线显示其具有较好的一致性。结论:本列线图可用于预测LGG患者1年和3年生存率,并且拥有较高的临床价值,可以为LGG的个体化治疗提供参考。