期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于堆叠模型的司法短文本多标签分类 被引量:3
1
作者 何涛 陈剑 +1 位作者 闻英友 孔为民 《计算机技术与发展》 2021年第3期27-32,共6页
司法文书短文本的语义多样性和特征稀疏性等特点,对短文本多标签分类精度提出了很大的挑战,传统单一模型的分类算法已无法满足业务需求。为此,提出一种融合深度学习与堆叠模型的多标签分类方法。该方法将分类器划分成两个层次,第一层使... 司法文书短文本的语义多样性和特征稀疏性等特点,对短文本多标签分类精度提出了很大的挑战,传统单一模型的分类算法已无法满足业务需求。为此,提出一种融合深度学习与堆叠模型的多标签分类方法。该方法将分类器划分成两个层次,第一层使用BERT、卷积神经网络、门限循环单元等深度学习方法作为基础分类器,每个基础分类器模型通过K折交叉验证得到所有数据的多标签分类概率值,将此概率值数据进行融合形成元数据;第二层使用自定义的深度神经网络作为混合器,以第一层的元数据为输入,通过训练多标签概率矩阵获取模型参数。该方法将强分类器关联在一起,获得比单个分类器更加强大的性能。实验结果表明,深度学习堆叠模型实现了87%左右的短文本分类F1分数,优于BERT、卷积神经网络、循环神经网络及其他单个模型的性能。 展开更多
关键词 堆叠模型 BERT 卷积神经网络 门限循环单元 多标签分类
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部