期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
多视角图像与PP-YOLOE结合的人群QR码检测方法
1
作者 张攀 邓盼 《宜宾学院学报》 2024年第6期33-37,51,共6页
现有目标检测系统在人群密集场景中无法有效实现尺寸极小快速响应码(QR码)的批量自动化检测,为此,提出一种基于多视角图像与改进PP-YOLOE模型的人群QR码辅助检测方法:首先构建多视角图像采集系统,通过侧视图与顶视图图像完成多种目标归... 现有目标检测系统在人群密集场景中无法有效实现尺寸极小快速响应码(QR码)的批量自动化检测,为此,提出一种基于多视角图像与改进PP-YOLOE模型的人群QR码辅助检测方法:首先构建多视角图像采集系统,通过侧视图与顶视图图像完成多种目标归属主体的正确关联;随后在路径聚合网络(PAN)中增加跨层空间注意力模块,提升模型算法小目标检测能力;利用深度可分离卷积对RepResBlock模块进行轻量化改进,提升模型算法执行效率.与其他4种算法的对比实验表明,最优有效目标检测准确率提高9.9%,单次可完成的检测数量达到13个、单目标检测平均耗时72.5 ms. 展开更多
关键词 PP-YOLOE 多视角图像 PAN 深度可分离卷积
下载PDF
改进多任务级联卷积神经网络的驾驶员疲劳检测
2
作者 刘星 文良华 +3 位作者 成奎 陈波杰 张宇杰 于剑桥 《宜宾学院学报》 2024年第12期7-11,68,共6页
针对驾驶员疲劳检测方法中存在单一特征检测的局限性,且由于模型参数计算量过大导致在低算力的移动边缘计算设备上检测耗时过长的问题,提出一种改进的多任务级联卷积神经网络(MTCNN).通过对子网络R-Net的优化,采用平均池化来减少模型参... 针对驾驶员疲劳检测方法中存在单一特征检测的局限性,且由于模型参数计算量过大导致在低算力的移动边缘计算设备上检测耗时过长的问题,提出一种改进的多任务级联卷积神经网络(MTCNN).通过对子网络R-Net的优化,采用平均池化来减少模型参数量,并将全连接层替换为均值池化,结合Dlib对人脸64个特征点的精准定位,选取效果较好的阈值参数实现疲劳检测.实验结果显示,在人脸数据集WIDER FACE和LFW数据集上,改进后的算法相比于改进前,参数量减少了47.5%,人脸检测的准确率从96.7%提升至97.8%.最后通过YawDD疲劳数据集,在资源受限的树莓派4B设备上实现了高效的疲劳检测,验证了其在实际应用中的可靠性. 展开更多
关键词 深度学习 疲劳检测 MTCNN 树莓派
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部