The nozzle inner-flow characteristic of the“spray G”injector was studied by the computational fluid dynamics(CFD)simulation,and the sensitivity of cycle fuel mass to the conicity and entrance radius of the nozzle ho...The nozzle inner-flow characteristic of the“spray G”injector was studied by the computational fluid dynamics(CFD)simulation,and the sensitivity of cycle fuel mass to the conicity and entrance radius of the nozzle hole were analyzed.Results show that the inner conicity of nozzle hole inhibits the development of cavitation phenomena,and increases the injection rate.While the outer conicity of nozzle hole promotes the diffusion of cavita-tion,leading to reductions of the liquid volume fraction of the nozzle outlet and the local flow resistance of the nozzle hole.The sensitivity of cycle fuel mass to inner-cone nozzle hole is stronger than that of the outer-cone noz-zle,especially at the smaller hole conicity.The increase of injection pressure enhances the sensitivity of the injection characteristics to the nozzle hole structure,in which inner-cone nozzle has higher sensitivity coefficient than the outer-cone nozzle hole.However,the increase of injection pressure aggravates the offset of liquid jet to the nozzle axis of the outer-cone nozzle hole.With the increase of the inner conicity of nozzle,the sensitivity of the injection characteristics to the entrance radius of the hole decreases.With the increase of the outer conicity of nozzle hole,the sensitivity of the injection characteristics to the entrance radius of the hole increases.展开更多
The experiments of the onset of nucleate boiling using R134a as working fluid were conducted in vertical helically-coiled tubes. The experiments were carried out with a range of pressure from 450 to 850 kPa, inlet sub...The experiments of the onset of nucleate boiling using R134a as working fluid were conducted in vertical helically-coiled tubes. The experiments were carried out with a range of pressure from 450 to 850 kPa, inlet subcooling from 4.7 to 15.0℃, heat flux from 0.11 to 8.9 kW/m2 and mass flux from 218. 2 to 443. 7 kg/( m2 · s ). The heat flux, superheat and temperature undershoot at the ONB are analyzed in vertical helically-coiled tubes. Also, the effects of mass flux, system pressure, inlet subcooling and geometric parameters on the ONB are studied. The results demonstrate that the inception heat flux and superheat increase with increasing mass flux and inlet subcooling, but decrease with increasing system pressure and helix diameter. The pitch of the helical coil has a slight effect on the wall superheat and heat flux at the ONB. The correlation of heat flux at the ONB of subcooled flow boiling in helical coil is developed based on the experimental data, and it shows a good agreement with the experimental data.展开更多
文摘The nozzle inner-flow characteristic of the“spray G”injector was studied by the computational fluid dynamics(CFD)simulation,and the sensitivity of cycle fuel mass to the conicity and entrance radius of the nozzle hole were analyzed.Results show that the inner conicity of nozzle hole inhibits the development of cavitation phenomena,and increases the injection rate.While the outer conicity of nozzle hole promotes the diffusion of cavita-tion,leading to reductions of the liquid volume fraction of the nozzle outlet and the local flow resistance of the nozzle hole.The sensitivity of cycle fuel mass to inner-cone nozzle hole is stronger than that of the outer-cone noz-zle,especially at the smaller hole conicity.The increase of injection pressure enhances the sensitivity of the injection characteristics to the nozzle hole structure,in which inner-cone nozzle has higher sensitivity coefficient than the outer-cone nozzle hole.However,the increase of injection pressure aggravates the offset of liquid jet to the nozzle axis of the outer-cone nozzle hole.With the increase of the inner conicity of nozzle,the sensitivity of the injection characteristics to the entrance radius of the hole decreases.With the increase of the outer conicity of nozzle hole,the sensitivity of the injection characteristics to the entrance radius of the hole increases.
基金The National Natural Science Foundation of China(No.50776055,51076084)the Natural Science Foundation of Shandong Province(No.ZR2016YL005)
文摘The experiments of the onset of nucleate boiling using R134a as working fluid were conducted in vertical helically-coiled tubes. The experiments were carried out with a range of pressure from 450 to 850 kPa, inlet subcooling from 4.7 to 15.0℃, heat flux from 0.11 to 8.9 kW/m2 and mass flux from 218. 2 to 443. 7 kg/( m2 · s ). The heat flux, superheat and temperature undershoot at the ONB are analyzed in vertical helically-coiled tubes. Also, the effects of mass flux, system pressure, inlet subcooling and geometric parameters on the ONB are studied. The results demonstrate that the inception heat flux and superheat increase with increasing mass flux and inlet subcooling, but decrease with increasing system pressure and helix diameter. The pitch of the helical coil has a slight effect on the wall superheat and heat flux at the ONB. The correlation of heat flux at the ONB of subcooled flow boiling in helical coil is developed based on the experimental data, and it shows a good agreement with the experimental data.