期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
运用“支持向量机”对客流量的预测研究
1
作者
田艳君
毛月华
李克
《时代金融》
2007年第4X期37-39,共3页
支持向量机(SVM)是一种崭新的机器学习方法,它建立在统计学习理论和结构风险最小化准则的基础上。此方法能解决小样本、非线性及高维模式识别中的问题。本文通过对某市公路客运量数据特征的分析,建立了基于支持向量机的客流量预测方法,...
支持向量机(SVM)是一种崭新的机器学习方法,它建立在统计学习理论和结构风险最小化准则的基础上。此方法能解决小样本、非线性及高维模式识别中的问题。本文通过对某市公路客运量数据特征的分析,建立了基于支持向量机的客流量预测方法,与人工神经网络预测方法相比,该预测模型的平均精度较高,且具有收敛速度快、泛化能力强等优点,比较适合客流量的预测。
展开更多
关键词
支持向量机
客流量
预测模型
核函数
下载PDF
职称材料
题名
运用“支持向量机”对客流量的预测研究
1
作者
田艳君
毛月华
李克
机构
山东
淄博市交通技
工
学校
山东理感工大学
出处
《时代金融》
2007年第4X期37-39,共3页
文摘
支持向量机(SVM)是一种崭新的机器学习方法,它建立在统计学习理论和结构风险最小化准则的基础上。此方法能解决小样本、非线性及高维模式识别中的问题。本文通过对某市公路客运量数据特征的分析,建立了基于支持向量机的客流量预测方法,与人工神经网络预测方法相比,该预测模型的平均精度较高,且具有收敛速度快、泛化能力强等优点,比较适合客流量的预测。
关键词
支持向量机
客流量
预测模型
核函数
分类号
F540 [经济管理—产业经济]
F224 [经济管理—国民经济]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
运用“支持向量机”对客流量的预测研究
田艳君
毛月华
李克
《时代金融》
2007
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部