Astrocyte elevated gene-1 (AEG-1) was cloned as an human immunodeficiency virus -1-inducible and tumor necrosis factor-α-inducible transcript in primary human fetal astrocytes by a rapid subtraction hybridization app...Astrocyte elevated gene-1 (AEG-1) was cloned as an human immunodeficiency virus -1-inducible and tumor necrosis factor-α-inducible transcript in primary human fetal astrocytes by a rapid subtraction hybridization approach. AEG-1 down-regulates the expression of the glutamate transporter EAAT2,thus,it is implicated in glutamate-induced excitotoxic damage to neurons as evident in HIV-associated neurodegeneration. Meanwhile,AEG-1 expression is elevated in subsets of breast cancer,prostatic cancer,glioblastoma multiforme and melanoma cells,having a dual specificity phosphatase activity. Overexpression of AEG-1 increases and siRNA inhibition of AEG-1 decreases migration and invasion of human glioma cells,respectively. Recent observations indicate that AEG-1 exerts its effects by activating the nuclear factor kappa B (NF-κB) pathway and AEG-1 is a downstream target of Ha-ras and plays an important role in Ha-ras-mediated tumorigenesis. These findings are intensifying interest in AEG-1 as a crucial regulator of tumor progression and metastasis and as a potential mediator of neurodegeneration.展开更多
文摘Astrocyte elevated gene-1 (AEG-1) was cloned as an human immunodeficiency virus -1-inducible and tumor necrosis factor-α-inducible transcript in primary human fetal astrocytes by a rapid subtraction hybridization approach. AEG-1 down-regulates the expression of the glutamate transporter EAAT2,thus,it is implicated in glutamate-induced excitotoxic damage to neurons as evident in HIV-associated neurodegeneration. Meanwhile,AEG-1 expression is elevated in subsets of breast cancer,prostatic cancer,glioblastoma multiforme and melanoma cells,having a dual specificity phosphatase activity. Overexpression of AEG-1 increases and siRNA inhibition of AEG-1 decreases migration and invasion of human glioma cells,respectively. Recent observations indicate that AEG-1 exerts its effects by activating the nuclear factor kappa B (NF-κB) pathway and AEG-1 is a downstream target of Ha-ras and plays an important role in Ha-ras-mediated tumorigenesis. These findings are intensifying interest in AEG-1 as a crucial regulator of tumor progression and metastasis and as a potential mediator of neurodegeneration.