【目的】对不同浓度磷、钾处理下小麦苗期氮养分效率相关性状进行QTL分析,以深入理解磷、钾与氮养分效率的相互关系,为氮营养相关性状的图位克隆及分子标记辅助选择育种奠定基础。【方法】采用苗期液培试验,以"川35050×山农48...【目的】对不同浓度磷、钾处理下小麦苗期氮养分效率相关性状进行QTL分析,以深入理解磷、钾与氮养分效率的相互关系,为氮营养相关性状的图位克隆及分子标记辅助选择育种奠定基础。【方法】采用苗期液培试验,以"川35050×山农483"组合衍生的小麦重组自交系群体(131个株系)为研究材料,设置了中磷中钾(MPMK)、高磷(HP)、低磷1(LP1)、低磷2(LP2)、低磷3(LP3),高钾(HK)、低钾1(LK1)、低钾2(LK2)、低钾3(LK3)共9个处理,对不同磷、钾处理下的氮养分效率相关性状进行研究,并结合分子标记遗传图谱,从整个基因组水平对与小麦苗期氮养分效率相关的10个性状进行QTL定位及遗传分析。【结果】不同处理下的10个性状共检测到137个QTL,位于除3D外的20条染色体上,大部分QTL(89.05%)仅在单一处理下被定位到,有3个QTL(QRnue-1A.2、QSnue-1A.1和QTnue-1A.1)可在至少4个处理中被检测到,有5个QTL(QRnue-1A.1、QTnue-1A.1、QSnc-4A、QRnc-6A.3和QSnue-6B)可同时在低磷和低钾环境中被检测到。本研究还检测到至少包含3个以上QTL的QTL簇17个,分别位于1A、1B、2B、2D、3A、3B、4A、4B、5D、6A、6 B、6 D和7 A染色体上,共涉及6 6个Q T L,占Q T L总数的4 8.1 8%。其中,有5个Q T L簇仅与特定磷、钾处理有关,大多数QTL簇均同时定位了不同磷、钾处理的不同性状,许多QTL簇位点还与前人定位的生物量、产量及其他养分有关。【结论】磷、钾的供应能够显著影响小麦苗期对氮素的吸收利用及其相关QTL的表达。影响苗期小麦氮养分效率相关性状的QTL大多数仅在特定处理下被检测到,但大多数QTL会形成QTL簇,构成了控制氮养分效率的QTL热点,许多热点区域也与前人定位的许多成株期性状如生物量、产量及其他养分效率有关,这些QTL/基因密集区域及其特点的发现,为我们深入理解小麦氮养分效率的遗传控制特点及其与磷、钾养分供应的关系提供了新的视角,也为这些重要位点的克隆及其应用提供数据支持。展开更多
文摘【目的】对不同浓度磷、钾处理下小麦苗期氮养分效率相关性状进行QTL分析,以深入理解磷、钾与氮养分效率的相互关系,为氮营养相关性状的图位克隆及分子标记辅助选择育种奠定基础。【方法】采用苗期液培试验,以"川35050×山农483"组合衍生的小麦重组自交系群体(131个株系)为研究材料,设置了中磷中钾(MPMK)、高磷(HP)、低磷1(LP1)、低磷2(LP2)、低磷3(LP3),高钾(HK)、低钾1(LK1)、低钾2(LK2)、低钾3(LK3)共9个处理,对不同磷、钾处理下的氮养分效率相关性状进行研究,并结合分子标记遗传图谱,从整个基因组水平对与小麦苗期氮养分效率相关的10个性状进行QTL定位及遗传分析。【结果】不同处理下的10个性状共检测到137个QTL,位于除3D外的20条染色体上,大部分QTL(89.05%)仅在单一处理下被定位到,有3个QTL(QRnue-1A.2、QSnue-1A.1和QTnue-1A.1)可在至少4个处理中被检测到,有5个QTL(QRnue-1A.1、QTnue-1A.1、QSnc-4A、QRnc-6A.3和QSnue-6B)可同时在低磷和低钾环境中被检测到。本研究还检测到至少包含3个以上QTL的QTL簇17个,分别位于1A、1B、2B、2D、3A、3B、4A、4B、5D、6A、6 B、6 D和7 A染色体上,共涉及6 6个Q T L,占Q T L总数的4 8.1 8%。其中,有5个Q T L簇仅与特定磷、钾处理有关,大多数QTL簇均同时定位了不同磷、钾处理的不同性状,许多QTL簇位点还与前人定位的生物量、产量及其他养分有关。【结论】磷、钾的供应能够显著影响小麦苗期对氮素的吸收利用及其相关QTL的表达。影响苗期小麦氮养分效率相关性状的QTL大多数仅在特定处理下被检测到,但大多数QTL会形成QTL簇,构成了控制氮养分效率的QTL热点,许多热点区域也与前人定位的许多成株期性状如生物量、产量及其他养分效率有关,这些QTL/基因密集区域及其特点的发现,为我们深入理解小麦氮养分效率的遗传控制特点及其与磷、钾养分供应的关系提供了新的视角,也为这些重要位点的克隆及其应用提供数据支持。